Quality Assurance Project Plan (QAPP)

Hempstead Harbor Water-Quality Monitoring Program

Approval Date: March 12, 2019

Prepared by: Coalition to Save Hempstead Harbor PO Box 159 Sea Cliff, NY 11579

Prepared for: U.S. Environmental Protection Agency Region 2

Monitoring Organization: Coalition to Save Hempstead Harbor

From: Tedesco, Mark [mailto:Tedesco.Mark@epa.gov] Sent: Friday, June 07, 2019 9:42 AM To: Carol DiPaolo Cc: Nelson, Esther; Lynes, Carol; Dombroski, Ian; 'The Coalition to Save Hempstead Harbor' Subject: RE: QAPP for Hempstead Harbor - Table 12 revision

Thanks Carol. Since this is not a change in the laboratory methods, but added detail in the table to specify preservation processing, I recommend that we just attach the letter and revised table to the approved QAPP. No need to incorporate into the original PDF of the approved QAPP. We can all incorporate this update into our files and records.

Best,

Mark

Mark A. Tedesco, Director EPA Long Island Sound Office Government Center, Suite 9-11 888 Washington Blvd. Stamford, CT 06904-2152 203-977-1542 www.Longislandsoundstudy.net P.O. Box 159 • Sea Cliff, NY 11579 • 516-801-6792 • cshh@optonline.net

June 5, 2019

Mark Tedesco Director EPA Long Island Sound Office Government Center, Suite 9-11 888 Washington Blvd. Stamford, CT 06904-2152

Dear Mark:

Table 12 (page 37) of the 2019 QAPP for Hempstead Harbor requires a revision regarding the laboratory requirements for sample handling for nitrogen samples. The laboratory methods have not changed, but the table required more specificity as it relates to the preservation of nitrogen samples. Pace Analytical Services provides us with two sample jars for each sample we collect—one collection jar is "unpreserved" and the second collection jar is "preserved" with H2SO4.

I have attached a scan of Table 12 included in the QAPP at page 37 as well as the revised Table 12.

Please advise us as to how you would like us to include the revised table.

Thank you for your time and attention in this.

Best regards,

l Di Paolo Carol DiPaolo

Programs Director and Water-Monitoring Coordinator

cc: Esther Nelson, QA Officer Ian Dombroski

Visit http://www.coalitiontosavehempsteadharbor.org for more information about our programs and activities.

000000

the monitoring event and are immediately transported to the laboratory once sampling is completed. A laboratory-provided trip blank is checked at the lab to assure the samples were maintained within the required temperature range ($0^{\circ}-6^{\circ}$ C). If the temperature-control sample is out of range, the results are flagged and qualified. *Table 12* presents preservation and holding-time requirements for the analyses performed by laboratories (samples are delivered immediately after monitoring; maximum hold time in *Table 12* is from the time of sample collection). All other parameters are field measured and are not held or preserved.

Parameter	Bottle Size/Type	Preservation	Туре	Max Hold Time
Fecal Coliform	250 ml/ Plastic	Iced	Grab	8 hours
Enterococci	250 ml/ Plastic	Iced	Grab	8 hours
Total Kjerdahl Nitrogen	250 ml/ Plastic	Iced	Grab	48 hour
Ammonia	250 ml/ Plastic	lced	Grab	48 hour
Nitrite	250 ml/ Plastic	lced	Grab	48 hour
Nitrate	250 ml/ Plastic	Iced (sample jar with H ₂ SO ₄)	Grab	28 days

Table 12: Laboratory Requirements for Sample Handling

Parameter	Bottle Size/Type	Preservation	Туре	Max Hold Time
Fecal Coliform	250 ml/plastic	Iced	Grab	8 hours
Enterococci	250 ml/plastic	Iced	Grab	8 hours
Total Kjerdahl Nitrogen	250 ml/plastic	Iced/preserved (H2SO4)	Grab	48 hours
Ammonia	250 ml/plastic	Iced/preserved (H2SO4)	Grab	48 hours
Nitrite/Nitrate	250 ml/plastic	Iced/unpreserved *	Grab	48 hours
Nitrite	250 ml/plastic	Iced/unpreserved	Grab	48 hours
Nitrate	(calculated: Nitrit	e/Nitrate –Nitrite = Nitrate	:)	· · · · · · · · · · · · · · · · · · ·

Table 12: Laboratory Requirements for Sample Handling

*Nitrite/Nitrate can be run from preserved or unpreserved samples; the hold time can be extended to 28 days if preserved with H2SO4.

Approval Page

Approved by:

Carol DiPaolo, Programs Director and Water-Monitoring Coordinator Coalition to Save Hempstead Harbor

X

Eric D. Swenson, Esq., Executive Director Hempstead Harbor Protection Committee Funding Organization's (HHPC) QA Manager

Mark Tedesco U.S. EPA Project Manager U.S. EPA Long Island Sound Office Director

Mach Jelesw

Esther Nelson U.S. EPA Region 2, Quality Assurance Officer

Molan alka X

lan Dombroski U.S. EPA Region 1, Program Officer

ombrosh: dm

Lynn Dwyer Program Director, Coastal, Northeast, National Fish and Wildlife Foundation X

Date: 3-25-19

Date: 3/25/19

Date: 3/25/2019

Date: 03/28/2019

Date: 3/27/2019

3/28/2019 Date:

Quality Assurance Project Plan

Appr	oval I	Pagei
1	Proje	ect and Task Organization1
	1.1	Project/Task Organization and Personnel Responsibilities1
	1.2	Communication Pathways3
	1.3	Modifications to QAPP3
2	Spec	ial Training Needs and Certification6
	2.1	Training for Program Managers6
	2.2	Training for Field Samplers6
	2.3	Corrective Procedures8
	2.4	Laboratory Accreditations
3	Prob	lem Definition and Background8
	3.1	Problem Definition8
	3.2	Background9
	3.3	Participation in the Long Island Sound Unified Water Study for Embayments11
4	Proje	ect and Task Description12
	4.1	In-Harbor Monitoring Program13
	4.2	Outfall Pathogen Monitoring17
5	Data	Quality Objectives and Criteria19
	5.1	Data Quality Objectives19

Quality Assurance Project Plan

	5.2	Data Q	uality Indicators20
		5.2.1	Precision
		5.2.2	Bias and Accuracy20
		5.2.3	Representativeness
		5.2.4	Comparability
		5.2.5	Completeness
		5.2.6	Sensitivity
6	Nond	direct	Measurements27
7	Proje	ect De	esign Elements27
	7.1	Monito	pring-Process Design27
		7.1.1	Addition of Monitoring Locations28
		7.1.2	Removal of Monitoring Locations29
	7.2	Ration	ale for Selection of Sampling Parameters29
8	Qual	ity Co	ontrol33
	8.1	Field R	equirements for Vertical Profiles34
	8.2	Field R	equirements for Grab Samples34
	8.3	Field (E	Blind) Duplicate Samples36
	8.4	Sample	e Handling and Custody Procedures36
	8.5	Fixed L	aboratory QC38

Quality Assurance Project Plan

9	Instr	ument/Equipment Inspection and Maintenance	38
	9.1	Instrument / Equipment Calibration and Frequency	.39
	9.2	Inspection / Acceptance of Supplies and Consumables	.40
10	Data	Management	41
11	Asse	ssment and Response Actions	42
12	Data	Validation and Usability	43
	12.1	Data Review, Verification, and Validation Methods	.43
	12.2	Data Usability	.44
13	Repo	orting, Documentation, and Records	45

Quality Assurance Project Plan

Table	es a la companya de l	Page
1	Program Personnel Responsibilities	4
2	Latitude/Longitude Points for Monitoring Stations	13
3	In-Harbor Water-Quality Monitoring	15
4	Outfall Pathogen Monitoring	18
5	Accuracy, Precision, and Sensitivity of Specific Monitoring Parameters	24
6	Accuracy and Precision for Laboratory Parameters	26
7	New York State Water Quality Standards (6 NYCRR Part 703)	31
8	Sampling Approaches for Vertical Profiles at Water-Quality Stations	32
9	Sampling Approaches for Grab Samples at Water-Quality Stations	33
10	Field Quality-Control Requirements for Vertical Profiles	34
11	Sampling Quality-Control Requirements for Grab Samples	35
12	Laboratory Requirements for Sample Handling	37
13	Instrument /Equipment Inspection Procedures	38
14	Instrument/Equipment Calibration Procedures	40
15	Supplies Inspection and Acceptance Procedures	41

End of Report

Quality Assurance Project Plan

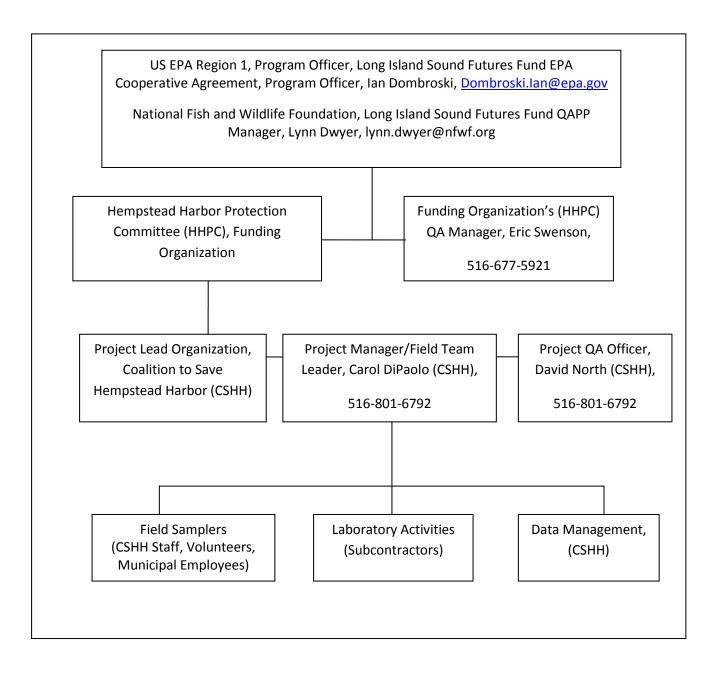
Hempstead Harbor Water-Quality Monitoring Program

Figur	res	Page
1	Hempstead Harbor Water-Monitoring Program Organizational Chart	2

Appendices

- A Standard Operating Procedures
- B Laboratory Accreditations
- C Monitoring Station Location Maps
- D Meter Operation Manuals (Links)
- E LaMotte Kit Manuals
- F Field Data, Calibration, and Chain of Custody Sheets
- G Electronic Data Format Examples

vii


1 Project and Task Organization

1.1 Project/Task Organization and Personnel Responsibilities

The organizational chart prepared for the Water-Monitoring Program for Hempstead Harbor is presented in *Figure 1*. The Quality Assurance (QA) Officer and Field Sampling Leader are responsible for the implementation of the QAPP. Note that the Hempstead Harbor Protection Committee (HHPC) is an intermunicipal organization consisting of representatives from the nine municipalities that have jurisdiction around Hempstead Harbor; HHPC has financial responsibility for the Hempstead Harbor water-monitoring program. The Coalition to Save Hempstead Harbor is a nonprofit, grassroots environmental organization that initiated the water program in 1992 and continues to conduct the sampling for the Hempstead Harbor water-monitoring program. *Table 1* presents the responsibilities of the personnel that are involved with the program. Individuals listed in *Table 1* will receive a copy of the QAPP. For purposes of this document, the Program Manager, Field Sampling Leader, and QA Officer positions are considered management personnel for the water-quality monitoring program and QAPP. Note that this QAPP replaces the related 2014 QAPP version.

Figure 1: Hempstead Harbor Water-Monitoring

Program Organizational Chart

1.2 Communication Pathways

Tasks to be accomplished during the monitoring events will be communicated between field personnel and managers following the Standard Operating Procedures presented in *Appendix A*. The QAPP will be reviewed by the QA Manager, Project Manager/Field Team Leader, and QA Officer at the beginning of each monitoring season. If issues arise during monitoring-program implementation, these personnel will discuss and institute any necessary changes. Issues pertaining to field activities or laboratory analyses will be addressed by the QA Manager, or the Project Manager/Field Sampling Leader, or both.

1.3 Modifications to QAPP

Modifications to this QAPP will be initiated by the Project Manager/Field Team Leader. When documenting amendments to the QAPP, the reasons for the changes will be outlined in a revision/modification log as will a description of how the changes are expected to affect the quality and usability of the data to be collected. Records of QAPP amendments will be maintained on-file at CSHH and HHPC offices. Proposed changes to the QAPP will be submitted to EPA for review and approval.

Table 1: Program Personnel Responsibilities

Title	Name	Affiliation	Responsibility
Life Scientist	lan Dombroski	US EPA, Region 1	Program Officer, US EPA Cooperative Agreement, National Fish and Wildlife Foundation
Program Director, Northeast Coastal	Lynn Dwyer	National Fish and Wildlife Foundation	QAPP Management for Long Island Sound Futures Fund
EPA QA Officer	Esther Nelson	Environmental Protection Agency	 Reviews proposed changes to the QAPP Coordinates approval process for the QAPP
Advisory Board	Municipal Officials	Hempstead Harbor Protection Committee	 Discusses and approves proposed changes in monitoring program Reviews and approves budgets
QA Manager	Eric Swenson	Hempstead Harbor Protection Committee	 Reviews and approves proposed changes to the QAPP Maintains correspondence with other groups

Project Manager/Field Team Leader	Carol DiPaolo	Coalition to Save Hempstead Harbor	 Organizes daily operation of monitoring program Schedules activities related to monitoring program Ensures that equipment is properly maintained and that consumables are available Trains volunteers and field samplers in the procedures described in this QAPP Procures analytical services Supervises sample handling Tracks samples to verify that they reach the laboratory Recommends changes to water-quality monitoring program Determines whether QAPP changes are necessary
Project Quality Assurance Officer	David North	Coalition to Save Hempstead Harbor	 Reviews the QAPP when necessary Reports data-quality deficiencies to Project Manager/Field Team Leader Oversees audits or data validation as mandated by this QAPP Assesses whether laboratory elements outlined in the QAPP are followed Oversees data verification activities
Field Samplers	Vary	Coalition to Save Hempstead Harbor Staff and Volunteers and Municipal Employees	 Assist the Project Manager/Field Team Leader as necessary Collect samples and collect and record field data Assist in maintaining field equipment

2 Special Training Needs and Certification

2.1 Training for Program Managers

Managers for the Hempstead Harbor water-quality monitoring program are required to be familiar with this QAPP and the Standard Operating Procedures (SOPs) presented in *Appendix A*. Additionally, the QA Officer will be trained in the use of the data-verification procedures presented in *Section 12*. The Project Manager/Field Team Leader will be trained in the operation, calibration, and maintenance of field-data-collection equipment and will be familiar with appropriate field-sampling procedures. Training will be provided by an individual who is experienced with similar monitoring equipment and sampling techniques. Training provided by technicians from the sampling-equipment manufacturers, if available, is preferred. The QA Officer and Project manager/Field Team Leader should have prior water-quality monitoring experience through this program, a similar program, or through work or education. The date and specifics of Project Manager/Field Team Leader training will be recorded and kept in the annual water-monitoring binder along with other training notes.

Program management will be evaluated during any cooperative monitoring events undertaken with similar water-quality monitoring groups or environmental-monitoring professionals. Deficiencies will be corrected with the procedures presented in *Section 2.3*.

2.2 Training for Field Samplers

Prospective Field Samplers (staff, volunteers and/or municipal employees) will meet with program managers for information regarding the monitoring program. Interested individuals will be formally trained before participating in any water-quality monitoring. Training will include a discussion of this QAPP, the program's SOPs, and any other procedures that are necessary. Topics will typically include:

- Monitoring-program background and purpose.
- The QAPP and SOPs.
- Field-equipment care and maintenance, including:
 - Calibration
 - Checking the calibration
 - Checking items that may need replacement (e.g., DO probe)
- Appropriate sample-collection procedures
- Sample handling and labeling
- Potential safety hazards

Hands-on volunteer training will be provided during regularly scheduled sampling events. Fieldsampler performance will be monitored informally by the Project Manager/Field Team Leader during sampling or during cooperative sampling events with members of other groups or environmental professionals. Deficiencies will be corrected with the procedures presented in *Section 2.3.*

The Project Manager/Field Team Leader will coordinate monitoring activities and will be assisted by field samplers. The Project Manager/Field Team Leader will select experienced field samplers who are familiar with this QAPP and the SOPs, and have demonstrated proficiency with all required procedures to sample to without supervision, in instances in which the Project Manager/Field Team Leader will not be present. In such instances, the Project Manager/Field Team Leader will review and approve documentation resulting from the monitoring activities (i.e., field data sheets and laboratory results).

2.3 Corrective Procedures

Individuals requiring additional instruction will receive instruction in the field at the time of sampling or will receive additional training prior to the next sampling event in which they participate. Systematic (group wide) deficiencies may require revision of the monitoring protocols, QAPP, Standard Operating Procedures, Data Quality Objectives (see *Section 8*), and other program documents. Deficiencies will be noted and the training program revised to improve future group wide performance. The training program will be revised, improved, and evaluated as appropriate.

2.4 Laboratory Accreditations

Copies of accreditations for the Nassau County Department of Health Laboratory and Pace Analytical Services, LLC are presented in *Appendix B*.

3 Problem Definition and Background

3.1 **Problem Definition**

The water-monitoring program for Hempstead Harbor (located on the north shore of Long Island) encompasses weekly (1) in-harbor water-quality monitoring that includes (a) measuring parameters related to the ecological health of the harbor and (b) sample collection to measure nitrogen and bacteria levels within the harbor and (2) an outfall-monitoring program to identify other critical areas of pathogen loading to the harbor. Sampling begins in May and continues until November.

The monitoring data will be used by the Coalition to Save Hempstead Harbor, Hempstead Harbor Protection Committee, Nassau County Department of Health, Nassau County Department of Public Works, the Interstate Environmental Commission, the New York State Department of Environmental Conservation, the Connecticut Department of Energy and Environmental Protection, Long Island Sound Study, other nongovernmental/environmental organizations, and the communities surrounding Hempstead Harbor. The data will be used to:

- Identify and study seasonal-scale trends in water quality
- Monitor aquatic habitats
- Identify causes for negative events (e.g., algal blooms and fish kills)
- Investigate long-term trends in water-quality parameter levels
- Guide municipal and county-level environmental planning, policy, and compliance efforts (e.g., Phase II Stormwater Program, TMDL development, the Long Island Nitrogen Action Plan, and the Long Island Sound Nitrogen Reduction Strategy)
- Measure progress towards meeting water-quality goals in the watershed
- Determine whether the opening of additional shellfish-harvesting areas within the harbor is feasible
- Identify pathogen sources for targeting pathogen-load reduction efforts

3.2 Background

Hempstead Harbor is a V-shaped harbor of approximately five miles from mouth to head, the harbor's average depth is 18 feet, and the maximum depth is about 40 feet. The harbor supports a number of uses including industry, primary and secondary contact recreation, and recreational fishing, and is classified by the New York State Department of State as a significant coastal fish and wildlife habitat. Previous industrial and commercial uses resulted in degraded water quality through oil spills, sewage spills, toxic contamination, air pollution, and industrial discharges. The greatest impacts of these discharges were noted in the mid-1980s. Restoration efforts in the harbor and its watershed resulted in the closure of a landfill, two incinerators, and a sewage treatment plant. Remediation has been completed for most of the hazardous waste sites around the harbor but is ongoing for others.

Hempstead Harbor is a dynamic hydrologic and ecologic system that is affected by both runoff from its watershed and tidal water from Long Island Sound. In the 1980s, beaches were frequently closed due to high bacteria levels. Low oxygen levels have also resulted in periodic fish kills.

Although Hempstead Harbor was once the most productive oystering harbor in New York, high bacteria levels kept its shellfish beds closed to harvesting for decades—as was the case for most bays around Long Island Sound. However, in 2011, as a result of dramatic water-quality improvements, 2,500 acres in the outer area of Hempstead Harbor were reclassified as certified for shellfish harvesting.

Although water-quality monitoring has been conducted in Hempstead Harbor since the 1980s by various governmental and private organizations, the water-monitoring program initiated by the Coalition to Save Hempstead Harbor in 1992, is one of the most extensive and oldest programs of its kind around Long Island Sound. CSHH was founded in 1986 in response reports of continued degradation of the harbor on a number of fronts. The impetus for creation of what was originally referred to as the citizens water-monitoring program for Hempstead Harbor were the severe county budget cuts that decimated Nassau County Department of Health's (NCDH) environmental program and ended midharbor sampling in the early 1990s. CSHH developed the Hempstead Harbor samples (to be analyzed by NCDH) to monitor bacteria levels, and engage community residents in efforts to improve water quality.

In 1995, the Hempstead Harbor Protection Committee was created. HHPC is an intermunicipal organization comprising the nine municipalities that are situated in the Hempstead Harbor watershed and has been focused on reducing stormwater runoff into the harbor. Beginning in 2006, HHPC assumed financial responsibility for the water-quality monitoring program, CSHH continues to do field sampling, data collection, and reporting for the program. The monitoring program is necessary to continue assessing the impact on the harbor of watershed-management improvements, to supplement data from beach and shellfish monitoring conducted by county and state agencies, and to track the impact of environmental policy in the surrounding communities.

To identify additional sources of pathogen loadings, an outfall pathogen-monitoring program was developed in 2009. This component of the monitoring program was considered necessary to develop strategies to further reduce levels of pathogen contamination that prevent the opening of additional shellfish harvesting areas within the harbor, result in occasional beach closures, and limit other recreational uses of the harbor.

3.3 Participation in the Long Island Sound Unified Water Study for Embayments

In 2016, CSHH was invited to be one of two organizations to participate in a pilot project for a wider program that was planned to measure the ecological health of bays around Long Island Sound. In 2017, the details of the Unified Water Study (UWS) were fleshed out, and CSHH was again invited to participate in the program, which is intended to have various groups around Long Island Sound measure water quality in embayments, using the same sampling equipment, standard operating procedures, and data handling and reporting.

In 2018, CSHH is again participating in the UWS and its equipment loan program, which lends electronic multiparameter meters and other equipment to each UWS group. To align both monitoring programs for Hempstead Harbor as much as possible, CSHH is using the same multiparameter meter (Eureka Manta +35) as the primary equipment for vertical profiles conducted as part of the Hempstead Harbor core monitoring program and the Hempstead Harbor UWS program.

Whereas the CSHH monitors up to 21 locations for the core Hempstead Harbor water-monitoring program, 6 stations are monitored for the UWS; 5 of the UWS stations are identical to sites included in the Hempstead Harbor core water-monitoring program. (See *Appendix C* for the CSHH sites for Hempstead Harbor monitoring programs.)

Previously used electronic equipment for the Hempstead Harbor core water-monitoring program (the YSI ProPlus for vertical profiles and the LaMotte 2020e for turbidity measurements) will be maintained for use as secondary equipment in the event that the primary equipment fails. **Note:** The calibration, operation, and maintenance procedures for the secondary, backup equipment are included in *Appendix A* following the standard operation procedures for the primary electronic meter.

4 **Project and Task Description**

CSHH monitors up to 21 CSHH locations weekly, generally from May to November. The principal CSHH stations that are sampled weekly during the monitoring season for all program parameters are located in the central and northern portion of the harbor, between the former Bar Beach sand spit (now part of the 36.2-acre North Hempstead Beach Park) and Long Island Sound, as well as stations in Glen Cove Creek. The four stations that are located south of the Bar Beach sand spit and two that are off of the eastern shore are also tested for all program parameters but less frequently because access to these stations is dependent on tidal cycles.

Regular-season monitoring occurs weekly on Wednesdays, approximately 7 am to 12 noon, barring inclement weather conditions or problems with boat availability. Immediately following sampling, water samples are delivered to the appropriate laboratories for analysis. Winter-program sampling, which focuses on the Powerhouse Drain Subwatershed, occurs weekly on Wednesdays or Thursdays, approximately 8 am to 10 am, from November to May; water samples are delivered immediately following sampling to the appropriate laboratories for analysis.

CSHH produces a publicly available Water-Quality Monitoring Report annually, summarizing findings and any changes to the program. The annual reports contain data collected during the preceding monitoring season as well as averages of certain parameters for comparison of previous years' conditions. Preparation of the annual report begins following termination of the regular-season monitoring and is completed following the end of the winter monitoring season; delivery of the report is scheduled for that July.

Table 2 includes the latitude/longitude points of the monitoring stations, and a map showing the monitoring locations is presented as *Appendix C*.

The monitoring program has two main elements—in-harbor monitoring and outfall pathogen monitoring—as described in *Sections 4.1* and *4.2*.

4.1 In-Harbor Monitoring Program

CSHH monitors estuarine water quality by measuring a series of field parameters and collecting samples to be analyzed by a laboratory. Dissolved oxygen, temperature, pH, salinity, and turbidity vertical profiles (1 meter intervals) are measured at most CSHH monitoring locations. A surface grab sample is field analyzed for ammonia at monitoring location CSHH #1 (a midharbor station in the central portion of the harbor) and CSHH #8 (in close proximity to the Glen Cove Sewage Treatment Plant outfall). If ammonia is detected at CSHH #1, samples collected at the other CSHH monitoring locations are field analyzed for ammonia as well. A Secchi-disk depth is recorded at each CSHH location. Samples are collected and analyzed for nitrate/nitrite, fecal coliform bacteria, and enterococci. *Table 3* summarizes the sampling program. The Nassau County Department of Health performs the bacterial analysis on CSHH station samples. Nitrate/nitrite is analyzed by Pace Analytical Services, LLC.

In 2015, three in-harbor monitoring stations (CSHH #16, #17, #17A) were added within the area of the harbor that was recertified for shellfish harvesting. CSHH #17 and #17A were specifically added to check conditions outside of Crescent Beach, which has been closed since 2009 because there is a known source of bacterial contamination (from a stream that runs adjacent to the beach and out to the harbor). CSHH #17 is just outside the restricted line for shellfish harvesting, and a full survey is conducted at this site. CSHH #17A is close to shore; a full survey is not conducted here, but bacteria and nitrogen samples are collected at this site.

Table 2: Latitude/Longitude Points for Monitoring Stations

(Garmin Montana 680t, NAD 83 Datum)

Station ID	Latitude N	Longitude W
Upper-Harbor St	ations	
CSHH #1, Beacon 11	40.83189	073.65353
CSHH #2, Bell 6	40.86099	073.67362
CSHH #3, red channel marker	40.85373	073.65202

Station ID	Latitude N	Longitude W
CSHH #8, adjacent to STP outfall pipe	40.85849	073.64204
CSHH #9, 10 ft west of #8	40.85850	073.64195
CSHH #10, 20 ft west of #8	40.85846	073.64198
CSHH #11, 50 ft east of #8	40.85852	073.64141
CSHH #12, 100 ft east of #8	40.85947	073.64054
CSHH #13, 60 ft from Mill Pond weir	40.86165	073.63583
CSHH #15, about 50 yds from Scudder's Pond outfall, north of Tappen Beach pool area	40.83820	073.65355
CSHH #15A, at outfall north of Tappen Pool	40.83837	073.65263
CSHH #15B, at Scudder's Pond weir	40.83709	073.65144
CSHH #16, north of Bell 6	40.87349	073.67493
CSHH #17, just outside the Crescent Beach restricted shellfish area	40.88365	073.65016
CSHH #17A, inside Crescent Beach restricted shellfish area, just off shoreline	40.88343	073.64819
Lower-Harbor St	ations	
CSHH #4, east of North Hempstead Beach Park (formerly Bar Beach) sand spit	40.82815	073.65015
CSHH #5, Mott's Cove	40.82197	073.64619
CSHH #6, east of Port Washington transfer station	40.81114	073.65008
CSHH #7, west of Bryant Landing (formerly site of oil dock)	40.80596	073.65065
CSHH #14, about 50 yds from Powerhouse Drain outfall	40.82848	073.64840

Station ID	Latitude N	Longitude W
CSHH #14A, at Powerhouse Drain outfall	40.82872	073.64776

In 2009, CSHH #15A (at outfall north of Tappen Pool) and #15B (Scudder's Pond weir) and, in 2010, CSHH #14A (Powerhouse Drain outfall) were added to the program. See *Section 4.2* for a description of these and other outfall-related stations.

Parameter	Location	Analyzer or Method	Location of Analysis
Dissolved Oxygen	Vertical profiles at 1-meter intervals at CSHH #1-7 and #16- 17	Eureka Manta+ 35*	Field
Dissolved Oxygen	One location for electronic meter validation	LaMotte 7414	Field
Water Temperature	Vertical profiles at 1-meter intervals at CSHH #1-7 and #16- 17	Eureka Manta+ 35*	Field
Water Temperature	One station for electronic meter validation	Calibrated Thermometer	Field
Air Temperature	One measurement at each station during monitoring	Calibrated Digital Thermometer	Field
Salinity	Vertical profiles at 1-meter intervals at CSHH #1-7 and #16- 17	Eureka Manta+ 35*	Field
рН	Vertical profile at 1-meter intervals at CSHH #1-7 and #16-17	Eureka Manta+ 35*	Field

Table 3:	In-Harbor Water-Quality Monitoring
----------	------------------------------------

Parameter	Location	Analyzer or Method	Location of Analysis
рН	One station for electronic meter validation	LaMotte 2218 reagent	Field
Turbidity	Vertical profile at 1-meter intervals at CSHH #1-7 and #16-17	Eureka Manta+ 35**	Field
Clarity	CSHH #1-7 and #16-17	LaMotte Secchi Disk	Field
Nitrogen, Kjeldahl, Total	Grab sample at half-meter depth at CSHH #1, #3, #6-7, #16	EPA 351.2	Pace Analytical Services, LLC
Ammonia	Grab sample at half-meter depth at CSHH #1, #3, #6-7, #16	SM22 4500	Pace Analytical Services, LLC
Nitrate	Grab sample at half-meter depth at #1, #3, #6-7, #16	EPA 353.2 Rev.2.0	Pace Analytical Services, LLC
Nitrite	Grab sample at half-meter depth at #1, #3, #6-7, #16	EPA 353.2 Rev.2.0	Pace Analytical Services, LLC
Fecal Coliform Bacteria	Grab sample at half-meter depth at CSHH #1-7, #16-17, and #17A	Membrane Filter, SM9222D-2006	Nassau County Department of Health
Enterococci	Grab sample at half meter depth at CSHH #1-7, #16-17, and #17A	Membrane Filter, EPA 1600	Nassau County Department of Health
Precipitation	Village of Sea Cliff	Stratus Precision Rain Gauge, visually read	Field

* YSI ProPlus multiparamater meter will be used in the event that the Eureka Manta+35 is out of service.

** LaMotte 2020e (USEPA 180.1) meter will be used in the event that the Eureka Manta+ 35 is out of service.

4.2 Outfall Pathogen Monitoring

The CSHH outfall pathogen-monitoring component of the water-monitoring program was developed to help assess pollutant loads and potential pathogen sources.

The study area for the program is defined by the Hempstead Harbor shoreline (and the associated upland drainage areas) south of an east-west line starting at the mouth of Glen Cove Creek (also as reference, south of three DEC SGA #50 stations – DEC #10 [private dock], #11 [navigational marker C-A], and #12 [beyond mouth of Glen Cove Creek]). The stations monitored include Glen Cove Creek outfalls: CSHH #8 (the area below the Glen Cove Sewage Treatment plant outfall); CSHH #9 and 10 (west of the STP outfall); CSHH #11 and 12 (in-creek, not directly adjacent to outfalls but used to assess the overall impact of stormwater on Glen Cove Creek); and CSHH #13 (at the head of Glen Cove Creek, about 60 feet from the Mill Pond weir and the 4-foot outfall at the corner of the south bulkhead).

Further south in Hempstead Harbor, along the eastern shoreline, is CSHH #15A (a large outfall at the bulkhead below Shore Road just north of the Tappen Pool). This outfall drains water from Scudder's Pond and Littleworth Lane in Sea Cliff. CSHH #15B is inside the pond at the weir, before the water drains to the harbor. These stations were established to monitor discharges prior to implementation/construction of stormwater strategies/structures at Scudder's Pond. In 2013, the major restoration work that was undertaken at Scudder's Pond was completed, but CSHH continues to monitor pond-related stations to assess the efficacy of the restoration efforts in diminishing bacteria loading to Hempstead Harbor. CSHH #15 is about 50 yards from the outfall at #15A and can be accessed only in high tide; bacteria samples are collected at this station to monitor the impact of water discharged from CSHH #15A.

CSHH #14A (the Powerhouse Drain outfall) is the large outfall below Shore Road at the bottom of Glenwood Road in Glenwood Landing and drains the subwatershed above. Samples collected from CSHH #14 (about 50 yards from the Powerhouse Drain outfall, CSHH #14A) are intended to monitor the impact of water discharged from CSHH #14A). Similar to the strategy that was developed for Scudder's Pond, the Powerhouse Drain outfall is being sampled during the summer season as well as during the fall and winter months. This sampling is being conducted in anticipation of the work

that will be undertaken to diminish stormwater runoff and bacteria loading to Hempstead Harbor, from what was determined to be the second largest contributor of bacteria to the harbor (Scudder's Pond was the largest, prior to the pond's restoration).

Parameter	Location	Analyzer or Method	Location of Analysis
Dissolved Oxygen	CSHH #8, #13, #14, and #15	Eureka Manta+ 35*	Field
Water Temperature	CSHH #8-13, #14, and #15	Eureka Manta+ 35*	Field
Water Temperature	CSHH #14A, #15A, #15B	Calibrated Digital Thermometer	Field
Air Temperature	One measurement at all outfall locations during monitoring	Calibrated Digital Thermometer	Field
Salinity	CSHH #8, #13, #14, and #15	Eureka Manta+ 35*	Field
рН	CSHH #8, #13, #14, and #15	Eureka Manta+ 35*	Field
Turbidity	CSHH #8, #13, #14, and #15	Eureka Manta+ 35**	Field
Clarity	CSHH #8, #13, #14, and #15	LaMotte Secchi Disk	Field
Nitrogen, Kjeldahl, Total	Grab sample at half-meter depth at CSHH #8, #12-13, #14A, #15A	EPA 351.2	Pace Analytical Services, LLC
Ammonia	Grab sample at CSHH#8, #12-13, #14A, #15A	EPA 350.1 Rev.2.0	Pace Analytical Services, LLC

Table 4: Outfall Pathogen Monitoring

Parameter	Location	Analyzer or Method	Location of Analysis
Nitrate	Grab sample at CSHH #8, #12-13, #14A, #15A	EPA 353.2 Rev.2.0	Pace Analytical Services, LLC
Nitrite	Grab sample at CSHH #8, #12-13, #14A, #15A	EPA 353.2 Rev.2.0	Pace Analytical Services, LLC
Fecal Coliform Bacteria	Grab sample at CSHH #8- 13, #14, #14A, #15, #15A, and #15B	Membrane Filter, SM9222D-2006	Nassau County Department of Health
Enterococci	Grab sample at CSHH #8- 13, #14, #14A, #15, #15A, and #15B	Membrane Filter, EPA 1600	Nassau County Department of Health
Precipitation	Village of Sea Cliff	Stratus Precision Rain Gauge, visually read	Field

* YSI ProPlus multiparameter meter will be used in the event that the Eureka Manta 2 is out of service.

**** LaMotte 2020e (USEPA 180.1) meter will be used in the event that the Eureka Manta 2 is out of service.

5 Data Quality Objectives and Criteria

5.1 Data Quality Objectives

Data quality objectives specify the quality of environmental data required to support decisionmaking processes for the Hempstead Harbor monitoring program.

5.2 Data Quality Indicators

Below is a description of the data quality indicators: precision, bias, accuracy, representativeness, comparability, completeness, and sensitivity. *Table 5* summarizes the accuracy, precision, and sensitivity of the specific monitoring parameters.

5.2.1 Precision

Precision of sampling will be estimated by the following:

- Taking duplicate field measurements (instruments) for one station for the first in-harbor station for each sampling event (representing 8-13% of in-harbor samples, depending on tidal cycles and access to stations).
- For the multiparameter meter, standards will be within 24 hours of the start and at the end of each field day, to verify the instrument has not drifted.
- Dissolved oxygen results from the multiparameter meter will be validated with a sample from one location per monitoring date and analyzed by the Winkler-titration method using a LaMotte field kit.
- pH results from the multiparameter meter will be validated with a sample from one location per monitoring date and analyzed by a LaMotte 2218 reagent kit.

See also Tables 5 and 6.

5.2.2 Bias and Accuracy

Accuracy and Bias of results will be estimated or confirmed by the following:

- Analysis of lab blanks (e.g., for bacteria)
- When a multiparameter sonde is used, standards will be read within 24 hours of the start and at the start and end of each field day, to verify the instrument is accurate.
- Calibration of the multiparameter meter within 24 hours prior to each monitoring event. The instruments are calibrated using the procedures outlined in the manufacturer user manuals as presented in *Appendix D*.

2019 QAPP for Hempstead Harbor

See also Tables 5 and 6.

Calibration acceptance criteria, where applicable, are defined in *Table 5* in *Section 5*.

5.2.3 Representativeness

Data Representativeness will be met by the following:

- Sampling sites are selected to be representative of conditions for a specific area of the water body (or a specific pollution source). For example, the three stations in the midsection of the harbor (CSHH #1, #2, #3) are representative of estuarine water conditions within that portion of the harbor; CSHH #16 and #17 may be considered representative of estuarine conditions in the outer section of the harbor.
- Outfall pathogen monitoring stations are not representative of estuarine water quality, but may be considered representative of conditions in areas within close proximity to fresh water inflows and/or similar pollutant loadings. For example, CSHH #9 and #10 are representative of other areas within Glen Cove Creek that are near fresh water inflows.
- Any abnormal or episodic conditions that may affect the representativeness of sample data are noted and maintained as metadata.
- Sample-collection timing and frequency of in-harbor stations are selected to capture data that are representative of a range of conditions (e.g., wet/dry weather, rising/ebb tide, and seasonal variability).

5.2.4 Comparability

Comparability of project data among sites and with that of others will be enhanced by the following:

- Using established field protocols.
- Using standard laboratory methodologies.
- Sampling consistently on the same day of the week and at similar times of day.

• Documenting methods, analysis, sampling sites, times and dates, sample storage and transfer, as well as laboratories and identification of specialists used so that future surveys can produce comparable data by following similar procedures.

5.2.5 Completeness

Data completeness goals shall be:

- At least 90% of the anticipated number of samples on a particular sampling date will be collected, analyzed, and used.
- Data will be tracked by keeping detailed and complete sample and survey records.
- Data will be summarized via a report detailing number of anticipated samples, number of valid results, and percent completion for each parameter.
- The anticipated number of samples with vary according to tidal cycles and access to monitoring stations

In-Harbor Monitoring Data

There are 10 in-harbor monitoring stations (including CSHH #17A—see *Section 4.1*). These encompass 4 lower-harbor stations and 6 upper-harbor stations. The completeness goal for each in-harbor monitoring event will vary according to tidal cycles. It is not possible to access lowerharbor stations during low tide. It is anticipated that access will be possible at least every three weeks to lower-harbor stations (sampling locations south of the sand spit of the Town of North Hempstead Beach Park). Therefore, failure to collect samples at these locations does not interfere with the usability of the data. Otherwise, CSHH will complete all sampling and field monitoring unless weather, tidal, safety issues, or other conditions interfere.

Outfall Monitoring Data

There are 11 outfall-related monitoring stations. These include 3 stations that have limited access because of tidal cycles (CSHH #13, CSHH #14, and CSHH #15). However, uncollected/unanalyzed samples will still allow meeting the goal of identifying potential pollutant sources (i.e., a high bacteria or nitrogen value at a particular outfall could still be useful as identifying a pollutant source or event).

Because the selected monitoring locations will represent suspected pathogen and nitrogen contributors to the harbor, a complete sampling event (samples from all outfall locations, up to 11) is intended to characterize the discharges to the harbor. Because the intended use of the data is to identify, quantify, and interpret pathogen inputs to the harbor, there is no specific representativeness requirement; e.g., if a sample is not collected during an event, the validity of the dataset will not be compromised.

5.2.6 Sensitivity

Sensitivity limits are determined by the analytical method or the instrument. Sensitivity is the lowest detection limit of the method or instrument for each of the measurement parameters of interest. Laboratory analyses have preset limits of detection for the nitrogen analyses as well as the coliform and enterococci bacteria. Field sampling equipment has published specifications that include detection limits.

See *Tables 5 and 6* for detection limits for water-quality parameters measured in this monitoring program.

Parameter	Units	Accuracy	Precision (allowable RPD)	Approx. Expected Range	Sensitivity
depth (calibrated line)	meters (m)	± 0.1 m	10%	0 - 12 m	0.1 m
depth (Eureka Manta+ 35)	meters (m)	0 to 10 m ±0.02 (±0.2% of FS) 0 to 25 m ±0.05 (±0.2% of FS) 0 to 50 m ±0.1 (±0.2% of FS)	10%	0 - 12 m	0.01m 0.01m 0.1 m
GPS coordinates (Garmin Montana 680t)	decimal degrees (DEC. deg.)	± 7.8 m http://www.gps.go v/systems/gps/perf ormance/accuracy /	for reference point on land, within 10 m (e.g., =0.0001 dec. d.)	NA	1.02 m
air/water temperature (digital thermometer)	degrees Celsius (°C)	±1°C	10%	-15 - 36 °C	0.1°C
Water temperature (Eureka Manta+ 35)	degrees Celsius (°C)	± 0.1 °C	10%	4 - 26 °C	0.01 °C

Table 5: Accuracy, Precision, and Sensitivity of Specific Monitoring Parameters

2019 QAPP for Hempstead Harbor

Parameter	Units	Accuracy	Precision (allowable RPD)	Approx. Expected Range	Sensitivity
salinity (Eureka Manta +35)	pss/ppt	±1% of reading ±0.1 ppt	10%	5-30 ppt	4 digits
dissolved oxygen (Winkler titration method)	milligrams per liter (mg/L) = parts per million (ppm)	0.2 ppm	10%	0 -14 ppm	0 ppm
dissolved oxygen (Eureka Manta+ 35)	milligrams per liter (mg/L) = parts per million (ppm); percent saturation (% sat.)	0 to 20 mg/l ± 0.2 mg/l 20 to 50 mg/l ± 10% reading 0 to 200% sat. ±1% of reading or ±0.1 % sat. 200 to 500% sat. ±10% of reading	10%	0 - 14 ppm 0 - 120 % sat.	0.1 ppm 0.1 % sat.
turbidity (Eureka Manta+ 35)	NTU	0 to 400 NTU ± 1% of reading ± 1 count 400 to 3000 NTU ± 3% of reading	10%	0 - 30 NTU	4 digits 4 digits
water clarity (Secchi disk)	m	0.1	10%	0 - 4 m	0.1 m

2019 QAPP for Hempstead Harbor

Parameter	Units	Accuracy	Precision (allowable RPD)	Approx. Expected Range	Sensitivity
ammonia (LaMotte 3304, salicylate method)	P P · · · ·	0.0, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0 ppm	(color metric)	0 - 1.0 ppm	0 ppm
pH (LaMotte 2218 wide-range indicator)		5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5	(color metric)	6.5 - 8.5 ppm	5.0 ppm
pH (Eureka Manta +35)		± 0.2	0.05%	6.5 - 8.5 ppm	.01

Table 6: Accuracy and Precision for Laboratory Parameters

Parameter	Method	Reporting Limit	Accuracy	Precision
Fecal Coliform	Membrane Filter, SM9222D-2006	<2 CFU/ 100mL	+/- 20%	+/- 5%
Enterococci	Membrane Filter, EPA 1600	<2 CFU/ 100mL	+/- 20%	+/- 5%
Ammonia	SM22 4500	0.10 mg/l	20%	+/-20%
Nitrate	EPA 353.2 Rev.2.0	0.05 mg/l	20%	+/-20%
Nitrite	EPA 353.2 Rev.2.0	0.05 mg/l	20%	+/-20%

6 Nondirect Measurements

To provide high-quality data to enhance the interpretation of data collected as part of this Monitoring Program, data may be acquired from qualified sources approved by the monitoring Project Manager/Field Team Leader. Tide information is obtained from the *Eldridge Tide and Pilot Book*, which is issued annually. No additional data sources have been identified that could be used in the monitoring program reports and data analysis. If other data is identified, its usability and comparability will be assessed.

7 **Project Design Elements**

7.1 Monitoring-Process Design

The monitoring program follows a judgment-based design intended to compare collected data with historical data and to provide a baseline for comparison with future sampling activities. A description of the monitoring locations, and the rational for the selection of those locations, is presented in *Section 4.* A map showing the monitoring locations is presented in *Appendix C*.

The Hempstead Harbor aquatic system is affected by many factors including tidal, seasonal, and meteorological conditions, treated sanitary wastewater, nonpoint-source runoff, and recreationaluses. Therefore, the monitoring of CSHH stations is conducted once per week from May to November to document changes in ambient water-quality conditions and gain information on potential pollution sources.

The monitoring Project Manager/Field Team Leader consulted with environmental agency staff, e.g., Nassau County Department of Health and NYS Department of Environmental Conservation, to determine the stations that should be selected for both the in-harbor and outfall-monitoring components of the program. Factors considered for selecting monitor stations as part of the inharbor or outfall monitoring components of the monitoring program include the following:

- In-harbor sites that were sampled previously by the above-mentioned agencies were incorporated into the current program to supplement historical data.
- In-harbor sites were selected as a result of changing water-quality conditions, as in case of stations selected following recertification of shellfish beds in the outer harbor.
- Some outfall monitoring sites were selected because they were near inflows that were determined to be known sources of bacteria loading to Hempstead Harbor.
- Some outfall monitoring sites were selected as a result of repeated observations of unusual discharges.

The water-quality testing stations were assigned unique numeric codes that run chronologically as new stations are added. For example, CSHH #1, #2, and #3 were the first sites selected when the program was initiated in 1992. CSHH #16, #17, and #17A are the newest stations—added in 2015.

There are 21 water-quality stations monitored in Hempstead Harbor that encompass in-harbor monitoring stations and outfall monitoring stations. Sonde profiles for water-quality parameters at water-quality stations will be sampled in 1 meter increments starting at 0.5 m below the surface and ending within a quarter of a meter from the bottom.

A summary of general design approaches to the number of stations, depth of sampling, frequency of sampling, and time of day are included here at *Table 8*.

7.1.1 Addition of Monitoring Locations

If other locations of interest are identified (e.g., if an outfall reconnaissance survey identifies the potential for significant pollutant sources or changing water-quality conditions require expanded investigation), they will be considered for future inclusion in the in-harbor or outfall monitoring components of the program as appropriate. The QAPP will be amended as appropriate to reflect any changes via a letter listing station changes.

7.1.2 Removal of Monitoring Locations

Program managers may consider removing in-harbor monitoring locations based on the changing needs of data users and the availability of funding. If a monitoring location is removed from the monitoring program, it must be noted in that year's annual report.

7.2 Rationale for Selection of Sampling Parameters

Field parameters measured include dissolved oxygen, temperature, salinity, pH, clarity, and turbidity. **Samples collected for laboratory analysis** include those for total Kjeldahl nitrogen, ammonia, nitrate, nitrite, fecal coliform, and enterococci. See *Tables 3* and *4*.

Dissolved oxygen is monitored because hypoxia is a common water-quality problem in Long Island Sound and Hempstead Harbor. DO is a significant indicator of estuarine health as it is required by marine fauna, and it is indirectly affected by nutrient enrichment. DO is an important indicator of the health of the fishery.

Monitoring water temperature is important in measuring percent saturation of DO within the harbor. In addition to nutrient enrichment, increased temperatures reduce water's capacity for DO. Thus, monitoring temperature indicates whether low DO levels result from temperature or nutrient enrichment. Additionally, monitoring temperature helps to determine whether the water column is stratified. Density currents, caused by temperature differentials, can prevent mixing within the water column and can lead to hypoxia.

Monitoring salinity assists in determining whether the harbor is being influenced by tidal water or by freshwater from the watershed (i.e., whether any water-quality problems result from stormwater, wastewater, other discharges, or from tidal backwater). Salinity measurements are also used to determine the percent saturation of DO. pH is monitored to follow trends in aquatic life and water chemistry. Release of carbon dioxide (CO_2) by respiration and consumption via photosynthesis affect aquatic pH on small time scales (hours to days), whereas increasing atmospheric CO_2 may affect aquatic pH on the decadal time scale.

Water clarity is monitored through the use of a Secchi disk, and turbidity levels are monitored through the use of a multiparameter meter. The Secchi disk is used to determine the depth to which ambient light can penetrate the water column. In most productive waters, Secchi disk depth is limited by algal productivity, thus this monitoring tool is used to track the spatial and temporal occurrence of algal blooms.

Ammonia is expected to be present in significant quantities only if there is a malfunction of wastewater treatment systems, including septic tanks, cesspools, and publicly owned treatment works (POTWs), or from illicit stormwater discharges. Thus, ammonia was previously monitored weekly using a LaMotte test kit at CSHH #1, which is distant from the harbor's inflows, and at CSHH #8, which is at the outfall of the Glen Cove sewage treatment plant. If ammonia was detectable during a monitoring event at CSHH #1, the assumption was that it may be the result of an unusual inflow event or the large presence of fish, so ammonia levels were then measured at the other monitoring stations on that day. However, over the last few years, detectable amounts of ammonia have been found increasingly at multiple CSHH stations, at the same time that a large presence of fish (notably, Atlantic menhaden) have been observed throughout Hempstead Harbor. It was decided that water samples would be collected for laboratory analysis to check those results against the results produced by the LaMotte kit. The laboratory results were within the range of the LaMotte kit results.

Having examined previous nitrogen data, and given the information currently available regarding nitrogen testing under the Long Island Nitrogen Action Plan and the Long Island Sound Nitrogen Reduction Strategy, we will begin a new nitrogen testing plan. We will collect samples for total Kjeldahl nitrogen, nitrate, nitrite, and ammonia on a biweekly basis using laboratory analysis at the following monitoring stations: CSHH #1, #3, #6-8, #12-13, #14A, #15A, and #16. Any changes to the stations sampled due to unforeseen circumstances will be documented in field notes. Nitrate and nitrite occur in later stages of the nitrogen cycle and are expected to be present in the estuary.

However, high concentrations indicate enrichment problems and can also be used to anticipate algal blooms and hypoxia. Thus, samples are collected at the CSHH locations described above for nitrate and nitrite and are subsequently analyzed at a certified laboratory.

The Nassau County Department of Health uses enterococci as the indicator of pathogen contamination for purposes of monitoring water quality at public swimming beaches. New York State Department of Environmental Conservation uses fecal coliform bacteria levels determine whether to open or close shellfish beds (*Table 7* presents applicable New York State surface water-quality standards for bathing beaches and shellfish beds). CSHH collects water samples at 21 stations throughout Hempstead Harbor to augment the data collected by these agencies and to help identify and diminish pathogen loading to the harbor.

Quality-assurance controls for field-sampling systems, including field-measurement checks and duplicate sampling, are presented in *Tables 8* and *9*.

Parameter	Standard*
Fecal Coliform	NYS beach closure standards: 1,000 CFU/100 ml for fecal coliform; 200 Log AvgFC/100 ml
	NYS shellfish standards: geometric mean of 14 FC/100mL or 90th percentile values of 49 FC/100mL
Enterococci	NYS beach closure standards: 104 CFU/100 ml for enterococci; and 35 Log AvgEnt/100 mg/l
Ammonia plus Ammonium	Standard is pH and temperature dependent. Range from 0.0007 to 0.050 mg/l
Nitrate plus Nitrite	10 mg/L (Class SA)
Dissolved Oxygen	4.8 ppm (mg/l)
рН	Normal range shall not be exceeded by more than 0.1 S.U.

*for SB Classified Water Body unless otherwise noted

Parameters	Number of Sample Locations*	Frequency	Field Survey Quality Control
			Reference land site, once per sampling event.
			Verbally repeat readings every time a station is sampled.
GPS: latitude & longitude in decimal degrees; NAD 83 coordinate system or record system used	every station		Coordinates indicating a 100 m or greater discrepancy will be assessed and documented in final report.
			Once per field day.
		every sample date	Take readings twice at the first station sampled.
water clarity–Secchi disk			Two readings at every station.
station depth			
sample depth			Take a replicate reading
temperature	every station starting at half a	-	at the last station sampled.
salinity	meter below the surface, thereafter in meter increments to		
dissolved oxygen	approximately one-quarter meter above bottom		Post-monitoring check
turbidity			and calibration per SOPs.
рН			

Table 8: Sampling Approaches for Vertical Profiles at Water-Quality Stations

*Note: Number of locations may vary based on tidal and weather conditions.

Parameters	Number of Sample Locations*	Frequency	Field Survey Quality Control
Fecal Coliform	21	1 day/week	trip blank to control for temperature and contamination; sample jars provided by
Enterococci			laboratory
Total Kjeldahl Nitrogen			
Ammonia	10	biweekly	trip blank provided with lab standard from another lab; duplicate analysis
Nitrate			
Nitrite			

Table 9:	Sampling Approaches	s for Grab Samples a	at Water-Quality Stations
----------	---------------------	----------------------	---------------------------

*Note: Number of locations may vary based on tidal and weather conditions.

8 Quality Control

Parameters monitored in the field are recorded on a copy of the field data sheet presented in *Appendix F*. Field equipment is maintained as discussed in the SOPs presented in *Appendix A*.

Lab quality control protocols are discussed with the external lab facility or contractor analyzing the enterococci and fecal coliform samples and the nitrogen samples prior to sampling to ensure acceptability.

2019 QAPP for Hempstead Harbor

8.1 Field Requirements for Vertical Profiles

Table 10 presents a summary of field quality-control requirements. (See also Table 8 in Section 7.2.)

Instrument	Parameter	Accuracy Checks	Precision Checks	Field QC
Garmin Montana 680t	GPS Coordinates	Set location of reference site and compare with Google Earth coordinates	Check readings at a land-based reference point and duplicate readings at one station	1/field day
Metered line	station depth	remeasure line	Check against boat depth finder and Eureka sonde reading	1/field day
Eureka Manta+ 35 multiparameter sonde	Isalinity	Pre-survey calibration and post-survey checks	duplicate profiles at one station and readings recorded only when values are stable	1/field day

Table 10: Field Quality-Control Requirements for Vertical Profiles

8.2 Field Requirements for Grab Samples

Table 11 presents a summary of field quality-control requirements for grab samples taken for indicator bacteria tests and for nitrogen tests. For bacteria samples and nitrogen samples, selected laboratories are used for analyses. The dissolved oxygen (Winkler titration) is analyzed in the field. (See also *Table 9* in *Section 7.2.*)

Lab/Test Kit	Parameter	Accuracy Checks	Precision Checks	Field QC
Laboratory analysis	fecal coliform and enterococci	all samples collected in laboratory-provided sample jars; samples stored on ice in cooler until delivery to the lab	the lab checks and records temperature when samples are delivered	trip blank to control for temperature and contamination; sample jars and preprinted data sheets provided by laboratory
Laboratory analysis	Total Kjeldahl nitrogen, ammonia, nitrate, and nitrite	all samples collected in laboratory provided sample jars; samples stored on ice in cooler until delivery to the lab	the lab checks and records temperature when samples are delivered	trip blank to control for temperature and contamination; sample jars provided by laboratory; preprinted jar labels and chain of custody sheets provided by lab, sample duplicates run by lab

Table 11: Field Quality-Control Requirements for Grab Samples

Lab/Test Kit	Parameter	Accuracy Checks	Precision Checks	Field QC
LaMotte test kits for field analysis	dissolved oxygen (Winkler titration) and pH	manufacturer directions are displayed for each sample analyzed; reagent bottles are held vertically while adding to sample to assure same amount of reagent used for each sample; sample for Winker titration collected at same depth that will be read from multiparameter meter	two or more members of the field team read color comparators to assess levels; sample for Winkler titration taken at same bottom depth and results compared with bottom reading of multiparameter meter	for Winkler titration, sample water held in the event that the test must be repeated

8.3 Field (Blind) Duplicate Samples

Duplicate samples will be collected to check the precision of the laboratory analysis and fieldsampling procedures. Duplicate samples will be analyzed for the same parameters as the corresponding primary samples collected at the same time. The duplicate sample set will be assigned a different sample number than the original set so that the sample identity is blind to the laboratory. One duplicate sample will be collected nominally per 20 samples per matrix and submitted to the laboratory.

8.4 Sample Handling and Custody Procedures

The majority of the measurements taken as part of the monitoring program are recorded in the field. Bacterial and nitrogen samples are labeled with a specific site identifier and the date and time the sample is taken. This information is also included on the lab-supplied data/chain-of-custody sheets. The samples are stored upright in a cooler with ice (for temperature control) during

the monitoring event and are immediately transported to the laboratory once sampling is completed. A laboratory-provided trip blank is checked at the lab to assure the samples were maintained within the required temperature range (0°-6°C). If the temperature-control sample is out of range, the results are flagged and qualified. *Table 12* presents preservation and holding-time requirements for the analyses performed by laboratories (samples are delivered immediately after monitoring; maximum hold time in *Table 12* is from the time of sample collection). All other parameters are field measured and are not held or preserved.

Parameter	Bottle Size/Type	Preservation	Туре	Max Hold Time
Fecal Coliform	250 ml/ Plastic	lced	Grab	8 hours
Enterococci	250 ml/ Plastic	lced	Grab	8 hours
Total Kjerdahl Nitrogen	250 ml/ Plastic	lced	Grab	48 hour
Ammonia	250 ml/ Plastic	lced	Grab	48 hour
Nitrite	250 ml/ Plastic	lced	Grab	48 hour
Nitrate	250 ml/ Plastic	lced (sample jar with H_2SO_4)	Grab	28 days

8.5 Fixed Laboratory QC

Quality-control samples that will be initiated by the laboratory (e.g., method blanks, instrument blanks, and MS/MSDs) will be analyzed in accordance with their quality assurance procedures and Laboratory Methods Manual.

9 Instrument/Equipment Inspection and Maintenance

Maintenance of instruments and equipment is conducted weekly during the field season. Records of equipment inspection, maintenance, and repair and replacement are kept in an annual logbook; logbooks are archived in the CSHH office. *Table 13* summarizes inspection procedures.

Equipment Type	Inspection Frequency	Type Inspection	Maintenance, Corrective Action
GPS unit	before each sampling date	battery life	charge batteries
calibrated depth	annually, or when a potential problem is noted	check the calibrated line	if line has stretched or is damaged, replace immediately
Secchi disk	before each sampling date		rinse after each sampling date, replace parts as needed

Equipment Type	Inspection Frequency	Type Inspection	Maintenance, Corrective Action
multiparameter sonde	before each sampling date	battery life, electrical connections, sensor condition	charge batteries, as appropriate
LaMotte test kits	before each sampling date	quantity and expiration of chemicals	vials are rinsed in the field with surface water; following field sampling, vials are rinsed with a light solution of Dawn detergent and tap water , chemicals are replaced as needed
calibrated electronic thermometer	before each sampling date	battery life	change battery as needed
wind meter	before each sampling date	check float ball	replace as needed
sample collection poles and jars	before each sampling date	check hinge and clamp	lubricate, replace as needed

9.1 Instrument / Equipment Calibration and Frequency

Calibration is conducted within a day prior to a sampling trip.

Calibration records are kept in an annual logbook and archived in the CSHH office. Calibration records are maintained for a minimum of five years, ideally longer. A summary of calibration procedures for instruments and equipment is provided in *Table 14*.

Instrument	Inspection and Calibration Frequency	Standard of Calibration for Instrument Used	Corrective Action
calibrated lines (for depth)	annually	LaMotte pre-marked line and tape measure	recalibrate or replace with calibrated line
multiparameter sonde	before each sampling run	standard solutions	manufacturer's instruction and tech support recommendations

Table 14: Instrument/Equipment Calibration Procedures*

*Detailed calibration procedures are described in SOPs contained in Appendix A.

9.2 Inspection / Acceptance of Supplies and Consumables

Supplies needed for this monitoring program include sampling bottles, calibration solutions, and equipment replacement parts. Samples will be collected in bottles supplied by the laboratory scheduled to perform the analysis. Bottles will be inspected for signs of contamination (e.g., unexpected liquids and broken seals) and wear (e.g., cracks and scratched lid threads) before use. Calibration solutions and replacement parts will be obtained from the original manufacturer of the equipment and/or the laboratory that has supplied the sample bottles. *Table 15* outlines the supplies inspection and acceptance procedures.

Supplies	Inspection Frequency	Type of Inspection	Available Parts	Maintenance
calibration standards	before each sampling date	visual inspection of quantity and expiration date	spare, fresh solutions	storage according to manufacturer's recommendations, annual replacement at beginning of sampling season
sonde before each sensors sampling date visual inspection of quantity, integrity		backup meter, new parts ordered as needed	storage according to manufacturer's recommendations	
field and lab sample sheets	before each sampling date	visual	additional copies	update sheets seasonally
cooler	before each sampling date	cleanliness, visual inspection of integrity	new ice supply weekly	annually or as needed

Table 15: Supplies Inspection and Acceptance Procedures

10 Data Management

Field data is collected on a field data sheet during each sampling event (see *Appendix F*). Field data will be compiled electronically after each event. A sample of the electronic data repository is presented in *Appendix G*. The electronic file will be backed up periodically. The original field data sheets will be maintained on file for at least five years in an annual logbook and archived in the CSHH office.

The Quality Assurance Officer will frequently (once per month) compare a sample of the field data sheets to the electronic file and edit any incorrectly entered data.

Records of QAPP amendments will be maintained at CSHH offices. A summary of changes and revisions from the previous version of the QAPP, along with a brief justification for the changes, will be appended to the front of the superseded QAPP in the file. A record of the EPA pertinent approvals shall be maintained with each version of the document.

11 Assessment and Response Actions

Management review procedures are presented in *Section 2.1*. Volunteer training and review procedures are presented in *Section 2.2*.

Data review, verification, validation, and usability are described in *Section 12*. Data quality audits will be conducted at least once per season by the Project QA Officer or other program manager. Audits will consist of inspecting the field data sheets, laboratory QA/QC data, and field duplicate RPD calculation, if available. A field audit will be conducted at least once per season by the Project Manager/Field Team Leader and will consist of overseeing sampling procedures. An equipment maintenance audit will be conducted at least once per season by the Project Manager/Field Team Leader and will consist of overseeing sampling procedures. An equipment Leader and will consist of overseeing precheck, postcheck, and calibration procedures. Any deficiencies will be reported to the QAPP Manager, who will oversee the resolution of deficiencies. Possible courses of action include revising the QAPP, seeking assistance from the laboratories and other groups, and marking previously accepted data as invalid or provisional.

The following is a list of possible occurrences in the field that may require corrective action and the corresponding action that would likely occur:

- If any sample bottles break during transit such that insufficient sample is available to complete the analysis resampling may have to occur.
- If meters or other sampling equipment break or malfunction during sampling, efforts will be made to repair, recalibrate, or replace them with back-up equipment.
- If there are unusual changes in detection limits, resampling and reanalysis may have to occur.
- For unusual occurrences in the field, a note will be made on the field data sheet.

12 Data Validation and Usability

The objectives of data validation are to:

- Assess and summarize the analytical quality and defensibility of data for the end user.
- Document factors contributing to analytical error that may affect data usability, such as data discrepancies, poor laboratory practices that impact data quality, site locations for which samples were difficult to analyze.
- Document any "sampling error" that may be identified by the data verification process, such as contaminated trip or equipment blanks, incorrect storage or preservation techniques, improper sampling containers, and improper sampling techniques.

12.1 Data Review, Verification, and Validation Methods

During or soon after a monitoring event, monitoring and quality-control results will be reviewed by the Project Manager/Field Team Leader. Any unusual values will be flagged. Unusual values may include quality-control limits (DQOs) that are exceeded or not met, any changes in reporting or detection limits that are noted, unexpectedly large or small values that were recorded, any noted deviation from this QAPP, or any missing values. Data entry is conducted by two CSHH members, and the electronic copy of the data is immediately checked against the field data sheet. The Project QA Officer will compare entered electronic data with the original data sheets at least once per season to ensure the data was entered correctly. Any errors found will be corrected.

The QA Officer will then examine and validate the reviewed data. Data that meets the data-quality objectives and that is collected following the procedures presented in this QAPP practice are considered valid. Data that is inconsistent with these standards (data that was flagged) will be examined by the Project Manager/Field Team Leader, QA Officer, (or both) to determine the cause of the deficiency and evaluate the usability of the affected data. This data may be accepted, marked as conditional, or discarded.

Depending on the outcome of the review, other actions may be taken. If equipment failure is suspected to be the reason for the problem, calibration or maintenance techniques will be reviewed and improved. If human error is suspected, team members will receive additional training as necessary. If data consistently violates DQOs, the SOPs, and QAPP, they will be reviewed and revisions suggested to correct identified problems (e.g., due to more variability in the sampled system or site specific issues). Additionally, the DQOs will be evaluated and adjusted if they are unreasonably stringent. Any data discrepancies, DQO violations, or other conditions that are not anticipated by the QAPP will be resolved on a case-by-case basis. Pertinent program procedures and documents will be revised as necessary. EPA will be notified of modifications to the QAPP in order to approve changes.

CSHH will attempt to track the sources of any unexpected conditions encountered during monitoring, such as unusually high monitoring results or exceedances of water-quality standards. If appropriate, further investigation will be undertaken, or the situation will be referred to an appropriate state or local agency.

12.2 Data Usability

The purpose of this QAPP is to provide data that is acceptable to current users, including those identified in *Section 3.1*. Input from data users will be considered during any revisions and modifications that may be made to this QAPP. Possible input could include revising data quality objectives, changing calibration procedures, and adjusting data-verification techniques.

User requirements and data-quality problems will be considered on a case-by-case basis. For example, if the calculated relative percent difference (RPD) for a nitrate field duplicate and the corresponding sample is greater than 30%, the difference may result from variability in the sampled system, and the two results could be averaged. However, if the RPD for a laboratory matrix spike program is larger than 30%, equipment problems may be present and all results should be discarded. The lab, other monitoring groups, EPA guidance documents, and other information will be consulted to determine the usability of a conditional sample.

Collected data will be used for the intended purpose. For example, monitoring locations selected to monitor inflow concentrations of pollutants will not be included in evaluating ambient harbor water-quality conditions.

13 Reporting, Documentation, and Records

CSHH currently presents the data collected by this monitoring program in HHPC/CSHH Annual Water Quality Reports, periodically at CSHH and HHPC member meetings, Long Island Sound Citizen Advisory Committee meetings, and on the CSHH's and HHP's websites.

Reporting, documentation, and record-keeping requirements are presented in Section 10.

Standard Operating Procedures

Standard Operating Procedures – Sampling Plan

Table of Contents

1	F	POINT OF CONTACT				
2	(OBJECTIVE2				
3	(OVE	RVIE	N2		
4	[DEFI	NITIC	DNS AND ABBREVIATIONS		
5	9	SOU	RCES			
6	ſ	MAT	ERIA	LS AND EQUIPMENT		
	6.1		Safe	ty3		
	6.2		Sam	pling Gear – All Stations		
7	ſ	MET	HOD	S4		
	7.1		Para	meters to Sample4		
	7.2		Timi	ng of Sampling6		
	-	7.2.1	L	Timing during the Year6		
	-	7.2.2	2	Timing during a Sample Day6		
	7.3		Sam	pling Depths6		
	-	7.3.1	L	Water Temperature, Salinity, Dissolved Oxygen, pH, Chlorophyll a, and Turbidity		
	-	7.3.2	2	Bacteria and Nitrogen7		
	7.4	Ļ	Requ	uired Replicates and Verification7		
	7.5		Orde	er of Events When Sampling at a Water-Quality Station9		
	-	7.5.1	L	Prepare for Sampling Trip9		
	-	7.5.2	2	Water-Quality Station Sampling9		
	-	7.5.3	3	End of Field Day9		
8	TROUBLESHOOTING / HINTS9					
9	DATA PROCESSING AND STORAGE10					
1(0 REFERENCES					

1 POINT OF CONTACT

NAME: Carol DiPaolo, Coalition to Save Hempstead Harbor (CSHH), Programs Director and Water-Monitoring Coordinator
 ADDRESS: PO Box 159, Sea Cliff, NY 11579
 EMAIL: <u>cshh@optonline.net</u>
 PHONE: 516-801-6792

2 OBJECTIVE

The objective is to sample water quality within Hempstead Harbor. Frequency of sampling and daily order of events are specified.

3 OVERVIEW

Up to 21 water-quality stations are monitored for Hempstead Harbor weekly.

Sampling for the "regular season" occurs May through October. The regular-season sampling includes monitoring stations at which *both* a multiparameter meter is used to obtain a water-column profile *and* samples are collected for bacteria and/or nitrogen analysis (13 sampling stations: CSHH #1-8, #13, #14, #15, #16-#17); the regular-season monitoring also includes monitoring stations at which *only* sample collection is conducted for bacteria and/or nitrogen analysis (8 sampling stations: CSHH #9-12, #14A, #15A, #15B, #17A).

Sampling for the "winter season" of up to three monitoring stations located at shoreline outfalls are related to specific watershed-management projects (e.g., the Scudder's Pond restoration and the anticipated implementation of the Powerhouse Drain Subwatershed Plan); this sampling is conducted from November through April for bacteria and nitrogen analysis only.

The sampling plan calls for 24 weeks of sampling during the regular season and 24 weeks of sampling during the winter season with a minimum of 22 weeks for each season. Because some of the monitoring stations cannot be accessed during low tide, the plan calls for sampling a minimum of 15 stations during the regular season and a minimum of one station during the winter season, barring unforeseen events or conditions.

Beginning with the 2019 monitoring season, collection of nitrogen samples will occur on a biweekly basis during both the regular season (May through October) and the winter season (November through April). During the regular season, nitrogen samples will be collected at 10 stations (CSHH #1, #3, #6-8, #12, #13, #14A, #15A, #16); during the winter season, nitrogen samples will be collected at up to 3 stations (CSHH #14A, #15A, #16); during the winter season, nitrogen samples will be collected at up to 3 stations (CSHH #14A, #15A, #16); during the winter season, nitrogen samples will be collected at up to 3 stations (CSHH #14A, #15A, #16); during the winter season, nitrogen samples will be collected at up to 3 stations (CSHH #14A, #15A, #16); during the winter season, nitrogen samples will be collected at up to 3 stations (CSHH #14A, #15A, #16); during the winter season, nitrogen samples will be collected at up to 3 stations (CSHH #14A, #15A, #16); during the winter season, nitrogen samples will be collected at up to 3 stations (CSHH #14A, #15A, #16); during the winter season, nitrogen samples will be collected at up to 3 stations (CSHH #14A regularly, and #15A #15B monthly).

4 DEFINITIONS AND ABBREVIATIONS

Each monitoring station where samples are collected is identified by the acronym "CSHH" and a number. "CSHH" is the acronym for the Coalition to Save Hempstead Harbor, the nonprofit environmental group

that initiated the Hempstead Harbor water-monitoring program in 1992 and continues to coordinate the program. The numbers assigned to the stations indicate the chronological order in which the stations were established (e.g., CSHH #1 and CSHH #2 were the earliest stations established in 1992; CSHH #16, CSHH #17, and CSHH #17A were the most recent stations added to the program).

5 SOURCES

The procedures used for the Hempstead Harbor water-monitoring program are aligned to the extent possible with those used for the Unified Water Study (UWS) for Long Island Sound Embayments, which are based on the EPA Volunteer Estuary Monitoring Manual (EPA, 2007) and follow methods used in the EPA National Coastal Assessment (EPA, 2001). For testing parameters that are not within the scope of the UWS, laboratory and manufacturer instructions and protocols are followed.

6 MATERIALS AND EQUIPMENT

6.1 Safety

Each team member should have a copy of the safety plan, which includes general boat safety information and location of flairs, other emergency equipment, and first aid supplies.

- □ Each team member should have:
 - a cellular phone available with the contact number for emergency personnel
 - contact information for all field team members stored in each member's cell phone
 - contact list and on the monitoring clipboard
- □ The monitoring clipboard should list each team member's:
 - full name
 - cell phone
 - home phone
 - emergency contact information
 - telephone numbers of emergency personnel (e.g., police, ambulance service)
- □ A first-aid kit should be prepared at the beginning of each season and include:
 - telephone numbers of emergency personnel
 - first-aid manual, which outlines diagnosis and treatment procedures
 - antibacterial or alcohol wipes
 - first-aid cream or ointment
 - several band-aids
 - several gauze pads
 - large compress bandage
 - doctor-prescribed antihistamine for any participant who is allergic to bee stings
- 6.2 Sampling Gear All Stations
 - REQUIRED
 - site maps with station locations indicated
 - list of station IDs with GPS coordinates for the sites

- clip boards
- pens
- permanent markers
- field data sheets
- grab poles for nitrogen and bacteria samples
- laboratory provided sample jars and field blanks
- two coolers
- ice
- electronic thermometer
- covered thermometer for Winkler titration sampling jar
- wind meter
- multiparameter meter and display unit
- meter platform
- calibrated rope
- test kits and fresh reagents

OPTIONAL BUT USEFUL

- extra batteries for any electronic sampling gear
- basic tools (pliers, wrench, screw drivers, etc.)
- plastic bags
- scissors, pocket knife
- cable ties
- electrical tape
- duct tape
- extra sampling jars
- current edition of the *Eldridge Tide and Pilot Book*

7 METHODS

7.1 Parameters to Sample

At first monitoring station—

- record:
 - date and time
 - GPS land reference check
 - names of team members present
 - weather conditions, as indicated on data sheet
 - water-surface conditions, as indicated on data sheet
 - tidal stage and hours to next high tide
 - previous week's precipitation
- □ use LaMotte test kits for pH and DO (using Winkler titration method) as checks against meter and results for those parameters
 - o rinse vials, sample jars with sample water before conducting tests

- dispose of used reagents and titrated samples into a temporary dump jar until final proper disposal
- □ conduct replicate profile with water meter

For each monitoring station-

- record:
 - GPS coordinates
 - time
 - air temperature
 - wind direction and speed
 - Secchi depth
 - readings at 0.5 m below the surface and at 1-m increments to the bottom for parameters as indicated on data sheet, including:
 - water temperature
 - o salinity
 - o dissolved oxygen
 - chlorophyll a (note that sonde chlorophyll a readings are used only as a frame of reference against previous day's Unified Water Study chlorophyll a readings)
 - \circ turbidity
 - wildlife observations, as indicated on data sheet
- □ collect water samples (as indicated in monitoring/sampling plan) for:
 - bacteria analysis (fecal coliform and enterococci) by the Nassau County Department of Health (NCDH) following NCDH protocols and using NCDH sample jars, field blanks, and data sheet—
 - label sample jar with a permanent marker indicating the site identification (e.g., CSHH #1) and date and time of sample collection
 - label the sample jar lid with the site identification
 - rinse sample jar twice with sample water before collecting sample
 - for in-harbor samples, collect sample at a half meter below surface using large sampling jar attached to sample grab pole with half-meter mark
 - for samples collected near outfalls, collect sample as close to outfall discharge as possible using large sampling jar attached to sample grab pole
 - data sheets should indicate time sample is collected, air temperature, water temperature, wind direction and speed, weather conditions (using NCDH codes), and wave height
 - collected samples and field blank must be kept in a cooler with ice and delivered within six hours of collection time
 - nitrogen analysis (nitrite, nitrate, ammonia, and TKN) using Pace Analytical Laboratory (PAL) and PAL protocols, sampling jars, jar labels, and chain of custody sheet—
 - fill out sheet labels with permanent pen or marker for sample jars and affix to appropriate jars (indicated as preserved and unpreserved by lab) prior to sampling

- place a loosely fitting rubber band around the preserved and unpreserved sample jars for each station prior to sampling
- rinse large sampling jar (attached to grab pole) twice with sample water
- for in-harbor samples, collect sample at a half meter below surface using large sampling jar attached to sample grab pole (a half-meter mark on pole)
- for samples near outfalls, collect sample as close to outfall discharge as possible using large sampling jar attached to sample grab pole
- pour sample into lab-provided sterile sample jars (preserved and unpreserved); each jar should have a label indicating the site name, date, and time of sample collection
- chain of custody sheets should reflect samples collected by site name and analysis requested
- collected samples should be kept in pairs (preserved and unpreserved) with a rubber band in a cooler with ice and delivered within the same day of collection

7.2 Timing of Sampling

The sampling plan is for weekly sampling. However, nitrogen samples will be collected biweekly.

7.2.1 Timing during the Year

Sampling occurs during a "regular" and "winter" season. Sampling is conducted May through October for the regular season and November through April for the winter season. The sampling plan calls for 24 weeks of sampling for each season, barring unforeseen events and conditions.

7.2.2 Timing during a Sample Day

Sampling is conducted once a week on the same day of the week (Wednesdays) and within the same time frame (7 am-12 pm), barring unforeseen events or conditions.

7.3 Sampling Depths

7.3.1 Water Temperature, Salinity, Dissolved Oxygen, pH, Chlorophyll a, and Turbidity

At sampling stations at which a profile of the water column is obtained using a multiparameter meter, readings for water temperature, salinity, dissolved oxygen, pH, and chlorophyll a are taken at a half a meter below the surface and at increments of 1 meter to the bottom (which is within 0.2 m of the floor).

Always record the depth of the sample.

(*Note* that chlorophyll a readings are taken only as a frame of reference and for comparison against readings taken for the Unified Water Study for which filtered chlorophyll samples are taken at a half a meter below the surface.)

7.3.2 Bacteria and Nitrogen

Bacteria and nitrogen samples are collected 0.5 m below the surface for in-harbor stations and below or in the near vicinity of outfalls for shoreline stations.

7.4 Required Replicates and Verification

During a field day, use the notation on the field data sheet as a reminder regarding the number of replicates required for each parameter.

Parameter & Technique	Field Replicates Required	Verification and/or Blank
GPS coordinates	1 reading per station	read a land-based reference station within 2 days of the field sampling day
Salinity, dissolved oxygen, pH, chlorophyll a, turbidity with multiparameter sonde	1 reading at each depth, wait for reading to stabilize before recording at 1 station per day (typically the first station), do two replicate profiles – do one complete profile, then do a second	verify depth by checking calibrated rope markings and boat depth finder read results in air-saturated water for dissolved oxygen, chlorophyll, and turbidity and standards for salinity (conductivity), turbidity, and pH; this can be done the day before (for precheck) and at the end of the sample day (for postcheck)
bacteria, laboratory analysis		include NCDH provided field blank when first bacteria sample is collected and place in cooler when sample is collected, check sample ID against field data sheet
		keep field blank and samples in cooler with jars slightly embedded in ice and deliver within six hours of sample collection
		at lab, technician will check and record temperature of sample on delivery

Table 2: Required replicates, blanks, and verification readings.

Parameter & Technique	Field Replicates Required	Verification and/or Blank
nitrogen (nitrate, nitrite, ammonia, TKN), laboratory analysis		each nitrogen analysis requires two lab- provided sample jars (to be filled with the same water sample collected in the large sample jar attached to the grab pole) keep samples in pairs (preserved and unpreserved); check sample ID against chain of custody sheet at lab, technician will check and record temperature of sample on delivery

7.5 Order of Events When Sampling at a Water-Quality Station

- 7.5.1 Prepare for Sampling Trip
 - A. Calibrate all instruments.
 - B. Make sure electronic instruments are fully charged.
 - C. Record the GPS of a reference station on land to verify the accuracy and precision of the GPS coordinates.
 - D. Gather all field supplies.
 - E. Complete the pre-sampling event portions of the datasheets.
- 7.5.2 Water-Quality Station Sampling
 - A. Record station information on the data sheet. *Be sure to complete all sections of the data sheet completely, for every data entry.*
 - B. Obtain total depth of the station.
 - C. Collect profile data using the multiparameter sonde, sampling from top to bottom
 - D. At one station per day, repeat measurements where only one profile is typically collected. The first station of the day is recommended for time management.
 - E. Read a calibration standard just following calibration and following the field trip to verify readings, for all parameters where this applies.
- 7.5.3 End of Field Day
 - A. Verify all sections of the data sheet have been completed.
 - B. Enclose laboratory data sheet/chain of custody in a plastic sleeve and include with respective nitrogen and bacteria sample jars to be delivered to labs.
 - C. Rinse equipment (sample grab poles, Secchi disk, platform, ropes, etc.) and store in preparation for next sampling date. Test-kit equipment should be rinsed in a very light solution of Dawn detergent and water (as per LaMotte Co. recommendations) and dried and stored for the next sampling date.
 - D. Do postcheck of multiparameter meter.

8 TROUBLESHOOTING / HINTS

- Gather field equipment the day prior to sampling. Check the field equipment in the morning, before heading out into the field. Use checklists included in field clipboard to prep for the field day.
- > Always carry a copy of this SOP and the relevant parameter-specific SOPs.
- > Print out the "quick sheets" for relevant SOPs to use as a reminder in the field. A plastic page-

protector or laminating sheets can be used to keep paper sheets dry.

9 DATA PROCESSING AND STORAGE

Two individuals will work together to enter data into an Excel spreadsheet and check data against original data sheets. The data spreadsheet will be stored in a computer file with a backup copy. The Monitoring Program Coordinator will be the custodian of the finalized data files.

10 REFERENCES

- EPA, 2007, Volunteer Estuary Monitoring, A Methods Manual, Second Edition. Orhrel Jr., R.L., Register, K.M. (Eds.). The Ocean Conservancy & EPA. 396 p. https://www.epa.gov/sites/production/files/2015-09/documents/2007_04_09 estuaries monitoruments manual.pdf
- EPA, U.S. 2001. National Coastal Assessment: Field Operations Manual. U. S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Gulf Ecology Division, Gulf Breeze, FL. EPA 620/R-01/003. 72 p.

Laboratory Accreditations

Expires 12:01 AM April 01, 2019 Issued April 01, 2018

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

NY Lab Id No: 10339

Chlorinated Hydrocarbon Pesticides

MR. THOMAS EDWARDS NASSAU COUNTY DEPT OF HEALTH 209 MAIN STREET HEMPSTEAD, NY 11550

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:

Bacteriology

Coliform, Fecal	SM 9221C E-2006	Mirex	EPA 8270D
	SM 9222D-2006	Toxaphene	EPA 8081B
Coliform, Total	SM 9221B-2006	Trifluralin	EPA 8270D
Enterococci	EPA 1600	Chlorinated Hydrocarbons	
Chlorinated Hydrocarbon Pesticides		1,2,4,5-Tetrachlorobenzene	EPA 8270D
4,4'-DDD	EPA 8270D	2-Chloronaphthalene	EPA 8270D
4,4'-DDE	EPA 8270D	Hexachlorobenzene	EPA 8270D
4,4-DDT	EPA 8270D	Hexachlorobutadiene	EPA 8270D
Aldrin	EPA 8270D	Hexachlorocyclopentadiene	EPA 8270D
alpha-BHC	EPA 8270D	Hexachloroethane	EPA 8270D
beta-BHC	EPA 8270D	Fuel Oxygenates	
Captan Chlordane Total	EPA 8270D EPA 8081B	Methyl tert-butyl ether	EPA-8260C
delta-BHC	EPA 8270D	Metals I	
Dichloran	EPA 8270D	Barium, Total	EPA 200.8, Rev. 5.4 (1994)
Dieldrin	EPA 8270D	Cadmium, Total	EPA 200.8, Rev. 5.4 (1994)
Endosulfan	EPA 8270D	Calcium, Total	EPA 200.7, Rev. 4.4 (1994)
Endosulfan sulfate	EPA 8270D	Chromium, Total	EPA 200.8, Rev. 5.4 (1994)
Endrin	EPA 8270D	Copper, Total	EPA 200.8, Rev. 5.4 (1994)
Endrin aldehyde	EPA 8270D	Iron, Total	EPA 200.7, Rev. 4.4 (1994)
Heptachlor	EPA 8270D	Lead, Total	EPA 200.8, Rev. 5.4 (1994)
Heptachlor epoxide	EPA 8270D	Magnesium, Total	EPA 200.7, Rev. 4.4 (1994)
lsodrin	EPA 8270D	Manganese, Total	EPA 200.8, Rev. 5.4 (1994)
Lindane	EPA 8270D	Nickel, Total	EPA 200.8, Rev. 5.4 (1994)
Methoxychlor	EPA 8270D	Potassium, Total	EPA 200.7, Rev. 4.4 (1994)
그는 이 것이 같은 것이 봐. 밖 같은 물 것을 잡다.			

Serial No.: 57424

Expires 12:01 AM April 01, 2019 Issued April 01, 2018 Revised October 22, 2018

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. THOMAS EDWARDS NASSAU COUNTY DEPT OF HEALTH 209 MAIN STREET HEMPSTEAD, NY 11550

NY Lab Id No: 10339

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Metals III

Bacteriology

Coliform, Total / E. coli (Qualitative)	SM 18-22 9223B (-97, -04) (Colilert)	Potassium, Total	EPA 200.7 Rev. 4.4
Fuel Additives		Sodium, Total	EPA 200.7 Rev. 4.4
Methyl tert-butyl ether	EPA 524.2	Microextractibles	
Metals		1,2-Dibromo-3-chloropropane	EPA 504.1
Arsenic, Total	EPA 200.8 Rev. 5.4	1,2-Dibromoethane	EPA 504.1
Barium, Total	EPA 200.8 Rev. 5.4	Miscellaneous	
Cadmium, Total	EPA 200.8 Rev. 5.4	1,4-Dioxane	EPA 522
Chromium, Total	EPA 200.8 Rev. 5.4	Benzo(a)pyrene	EPA 525.2
Copper, Total	EPA 200.8 Rev. 5.4	Bis(2-ethylhexyl) phthalate	EPA 525.2
Iron, Total	EPA 200.7 Rev. 4.4	Di (2-ethylhexyl) adipate	EPA 525.2
Lead, Total	EPA 200.8 Rev. 5.4	Hexachlorobenzene	EPA 525.2
Manganese, Total	EPA 200.8 Rev. 5.4	Hexachlorocyclopentadiene	EPA 525.2
Mercury, Total	EPA 245.1 Rev. 3.0	Turbidity	EPA 180.1 Rev. 2.0
Selenium, Total	EPA 200.8 Rev. 5.4	Non-Metals	
Silver, Total	EPA 200.8 Rev. 5.4	Alkalinity	SM 18-22 2320B (-97)
Zinc, Total	EPA 200.8 Rev. 5.4	Calcium Hardness	EPA 200.7 Rev. 4.4
Metals II	e la superior de la composición de la Composición de la composición de la comp	Chloride	EPA 300.0 Rev. 2.1
Antimony, Total	EPA 200.8 Rev. 5.4	Color	SM 18-22 2120B (-01)
Beryllium, Total	EPA 200.8 Rev. 5.4	Eluoride, Total	EPA 300.0 Rev. 2.1
Nickel, Total	EPA 200.8 Rev. 5.4	Nitrate (as N)	EPA 300.0 Rev. 2.1
Thallium, Total	EPA 200.8 Rev. 5.4	Nitrite (as N)	EPA 300.0 Rev. 2.1
Metals III		Orthophosphate (as P)	EPA 300.0 Rev. 2.1
[278] 278] 26일 - 2012 - 2012 (1997) 11 - 2012 11 - 2012 (1997) 12 - 2012 (1997) 12 - 2012 (1997) 12 - 2012 (1997) 12 - 2012 (1997) 12 - 2012 (1997) 12 - 2012	EPA 200.7 Rev. 4.4	Silica, Dissolved	EPA 200.7 Rev. 4.4
Calcium, Total Magnesium, Total	EPA 200.7 Rev. 4.4 EPA 200.7 Rev. 4.4	Specific Conductance	SM 18-22 2510B (-97)

Serial No.: 58739

Expires 12:01 AM April 01, 2019 Issued April 01, 2018 Revised February 06, 2019

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

DR. MICHAEL E. MILLER PACE ANALYTICAL SERVICES, LLC - LONG ISLAND NY 575 BROAD HOLLOW ROAD MELVILLE, NY 11747 NY Lab Id No: 10478

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER All approved analytes are listed below:

Organohalide Pesticides

Non-Metals

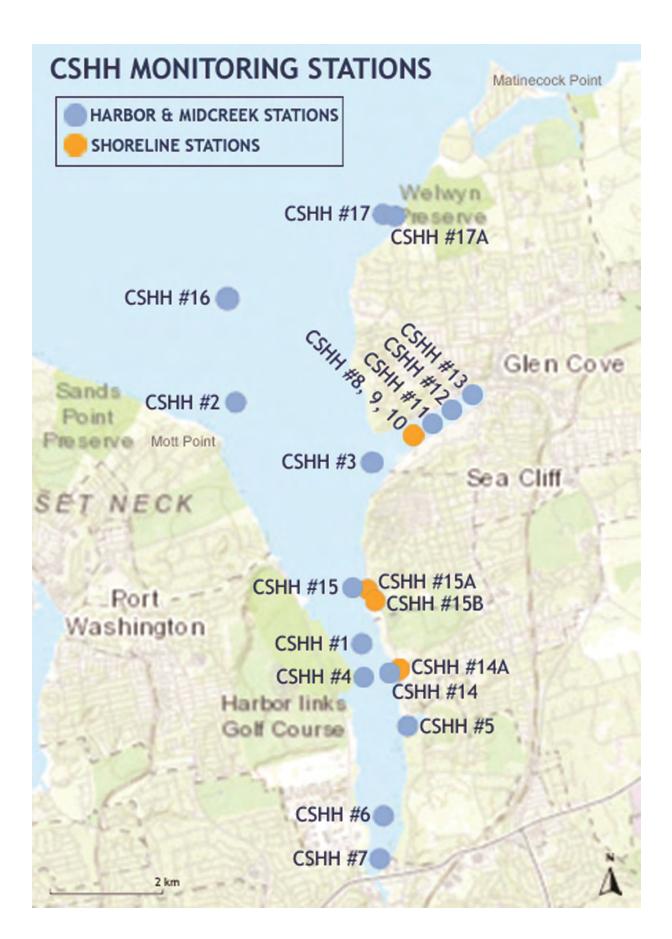
Chloride	SM 21-22 4500-CI- E (-97)	Metolachlor	EPA 525.2
Color	SM 21-23 2120B (-01)	Metribuzin	EPA 525.2
Corrosivity	SM 18-22 2330	Propachlor	EPA 525.2
Cyanide	SM 20, 21-23 4500-CN E	Simazine	EPA 525.2
Fluoride, Total	EPA 300.0 Rev. 2.1	Toxaphene	EPA 505
Nitrate (as N)	EPA 353.2 Rev. 2.0	Polychlorinated Biphenyls	이 같은 속 같은
Nitrite (as N)	EPA 353.2 Rev. 2.0	PCB Screen	EPA 505
Orthophosphate (as P)	SM 19, 21-23 4500-P E (-99)		EFA 303
Silica, Dissolved	EPA 200.7 Rev. 4.4	Trihalomethanes	
Solids, Total Dissolved	SM 21-23 2540C (-97)	Bromodichloromethane	EPA 524.2
Specific Conductance	EPA 120.1 Rev. 1982	Bromoform	EPA 524.2
	SM 21-23 2510B (-97)	Chloroform	EPA 524.2
Sulfate (as SO4)	EPA 300.0 Rev. 2.1	Dibromochloromethane	EPA 524.2
Organohalide Pesticides		Total Trihalomethanes	EPA 524.2
Alachior	EPA 505	Volatile Aromatics	
	EPA 505	1,2,3-Trichlorobenzene	EPA 524.2
Aldrin	이 지수는 사람이 가지 않는 것을 위해 주셨다.	1,2,4-Trichlorobenzene	EPA 524.2
Atrazine	EPA 525.2	1,2,4-Trimethylbenzene	EPA 524.2
Butachlor	EPA 525.2	1,2-Dichlorobenzene	EPA 524.2
Chlordane Total	EPA 505	1,3,5-Trimethylbenzene	EPA 524.2
Dieldrin	EPA 505	사실에 그는 것 것 같아? 는 것 같은 것 것 같아? 그는 것은 것	EPA 524.2
Endrin	EPA 505	1,3-Dichlorobenzene	
Heptachlor	EPA 505	1,4-Dichlorobenzene	EPA 524.2
Heptachlor epoxide	EPA 505	2-Chlorotoluene	EPA 524.2
Lindane	EPA 505	4-Chlorotoluene	EPA 524.2
Methoxychlor	EPA 505	Benzene	EPA 524.2

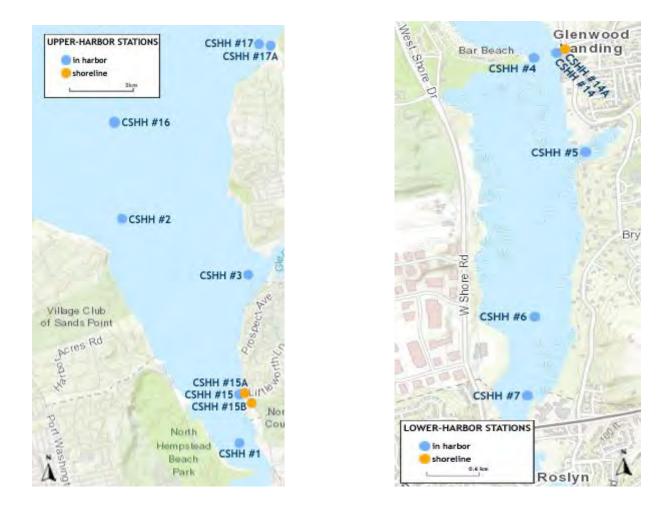
Serial No.: 59090

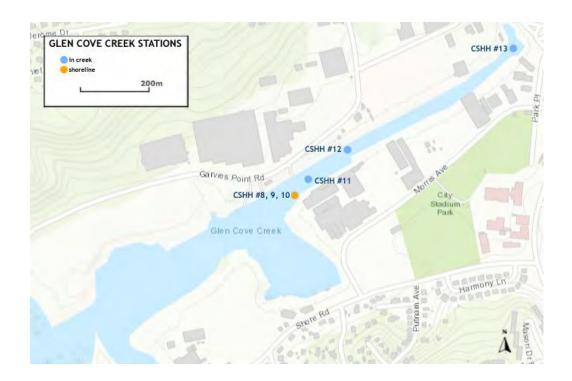
Expires 12:01 AM April 01, 2019 Issued April 01, 2018 Revised February 20, 2019

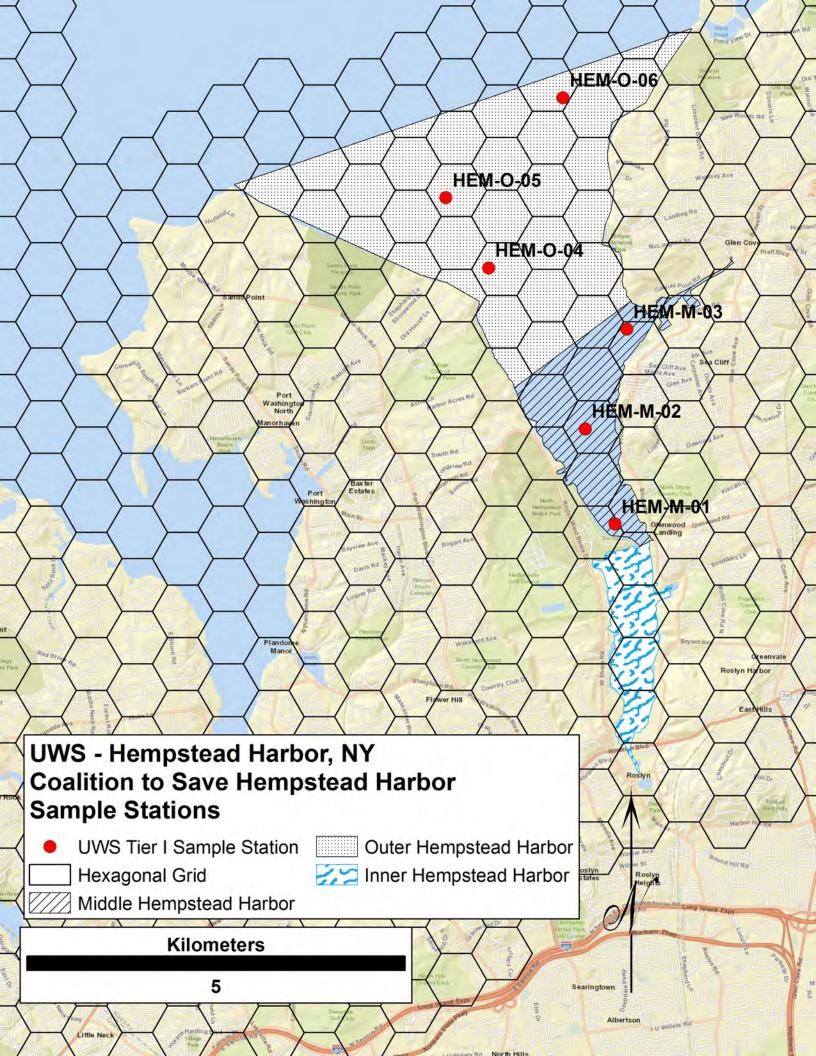
CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

DR. MICHAEL E. MILLER PACE ANALYTICAL SERVICES, LLC - LONG ISLAND NY 575 BROAD HOLLOW ROAD MELVILLE, NY 11747 NY Lab Id No: 10478


is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved analytes are listed below:


Nitroaromatics and Isophorone		Nutrient	
2,6-Dinitrotoluene	EPA 625.1	Orthophosphate (as P)	SM 4500-P E-2011
	EPA 8270D	Phosphorus, Total	SM 4500-P E-2011
Isophorone	EPA 625.1	Organophosphate Pesticides	
	EPA 8270D	Atrazine	EPA 8270D
Nitrobenzene	EPA 625.1	Dimethoate	EPA 8270D
	EPA 8270D	Disulfoton	EPA 8270D
Nitrosoamines		Famphur	EPA 8270D
N-Nitrosodiethylamine	EPA 8270D	Parathion ethyl	EPA 8270D
N-Nitrosodimethylamine	EPA 625.1	Parathion methyl	EPA 8270D
	EPA 8270D	Phorate	EPA 8270D
N-Nitrosodi-n-butylamine	EPA 8270D	Sulfotepp	EPA 8270D
N-Nitrosodi-n-propylamine	EPA 625.1	Thionazin	EPA 8270D
	EPA 8270D	Petroleum Hydrocarbons	
N-Nitrosodiphenylamine	EPA 625.1	Diesel Range Organics	EPA 8015D
	EPA 8270D	Gasoline Range Organics	EPA 8015D
N-nitrosomethylethylamine	EPA 8270D	김 동네를 늦고했다. 나라네	
N-nitrosopiperidine	EPA 8270D	Phthalate Esters	
N-Nitrosopyrrolidine	EPA 8270D	Benzyl butyl phthalate	EPA 625.1
Nutrient			EPA 8270D
	SM 4500-NH3 H-2011	Bis(2-ethylhexyl) phthalate	EPA 625.1
Ammonia (as N)			EPA 8270D
	EPA 350.1, Rev. 2.0 (1993)	Diethyl phthalate	EPA 625.1
Kjeldahl Nitrogen, Total	EPA 351.2, Rev. 2.0 (1993)		EPA 8270D
Nitrate (as N)	EPA 353.2, Rev. 2.0 (1993)	Dimethyl phthalate	EPA 625.1
Nitrate-Nitrite (as N)	EPA 353.2, Rev. 2.0 (1993)		EPA 8270D
Nitrite (as N)	EPA 353.2, Rev. 2.0 (1993)		


Serial No.: 59126



Monitoring Station Location Maps

Appendix D

Meter Operation Manuals (Links)

Eureka Manta+ 35

Eureka Manual, online at:

https://docs.wixstatic.com/ugd/7f6545_f1fc5b1a1d3844c19103377c8714a54a.pdf

See Section C, C2-C5 at pages 27-30; C7-C10, pages 31-36; C12-C13, pages 37-41, C18, pages 46-47.

See Eureka video demonstrating calibration procedures For Manta +35 multiparameter meter:

https://www.youtube.com/watch?v=aooBZgg-hTk

YSI ProPlus

YSI ProPlus Manual, online at:

https://www.ysi.com/File%20Library/Documents/Manuals/605596-YSI-ProPlus-User-Manual-RevD.pdf

See pages 20-41, 51-52, 58-62, and 64-69.

LaMotte Kit Manuals

PRECISION PH KIT

OCTA-SLIDE 2, pH 3.0-10.5

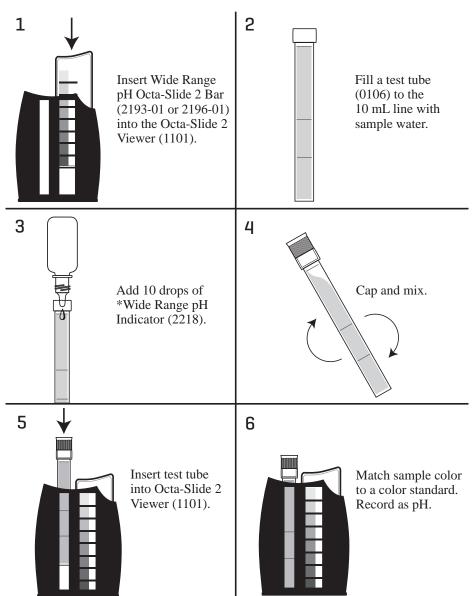
CODE 5858-01

QUANTITY	CONTENTS	CODE
2 x 30 mL	*Wide Range pH Indicator	*2218-G
2	Test Tubes, 2.5-5-10 mL, plastic, w/caps	0106
1	Wide Range pH Octa-Slide 2 Bar, 3.0-6.5	2193-01
1	Wide Range pH Octa-Slide 2 Bar, 7.0-10.5	2196-01
1	Octa-Slide 2 Viewer	1101

*WARNING: Reagents marked with an * are considered to be potential health hazards. To view or print a Safety Data Sheet (SDS) for these reagents go to www.lamotte.com. Search for the four digit reagent code number listed on the reagent label, in the contents list or in the test procedures. Omit any letter that follows or precedes the four digit code number. For example, if the code is 4450WT-H, search 4450. To obtain a printed copy, contact LaMotte by email, phone or fax.

Emergency information for all LaMotte reagents is available from Chem-Tel (US, 1-800-255-3924) (International, call collect, 813-248-0585).

To order individual reagents or test kit components, use the specified code number.


Warning! This set contains chemicals that may be harmful if misused. Read cautions on individual containers carefully. Not to be used by children except under adult supervision.

USE OF THE OCTA-SLIDE 2 VIEWER

The Octa-Slide 2 Viewer should be held so non-direct light enters through the back of the Viewer. Insert the Octa-Slide 2 Bar into the Viewer. Insert the reacted sample into the top of the Viewer. Match the color of the reaction to the color standards.

PROCEDURE

LaMOTTE COMPANY

Helping People Solve Analytical Challenges

PO Box 329 · Chestertown · Maryland · 21620 · USA 800-344-3100 · 410-778-3100 (Outside U.S.A.) · Fax: 410-778-6394 Visit us on the web at www.lamotte.com

Dissolved Oxygen

Water Quality Test Kit

ELaMotte

INTRODUCTION

Aquatic animals need dissolved oxygen to live. Fish, invertebrates, plants, and aerobic bacteria all require oxygen for respiration. Oxygen dissolves readily into water from the atmosphere until the water is saturated. Once dissolved in the water, the oxygen diffuses very slowly and distribution depends on the movement of the aerated water. Oxygen is also produced by aquatic plants, algae, and phytoplankton as a by-product of photosynthesis.

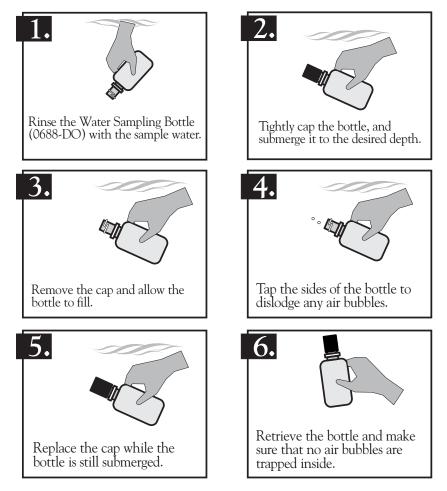
The amount of oxygen required varies according to species and stage of life. Dissolved Oxygen levels below 3 ppm are stressful to most aquatic organisms. Dissolved Oxygen levels below 2 or 1 ppm will not support fish. Levels of 5 to 6 ppm are usually required for growth and activity.

Page

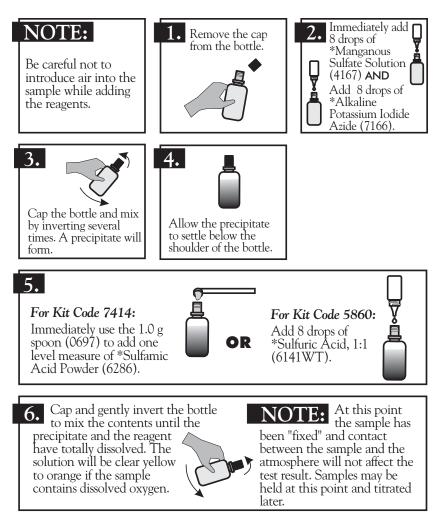
This test kit uses the azide modification of the Winkler method for determining dissolved oxygen.

TABLE OF CONTENTS

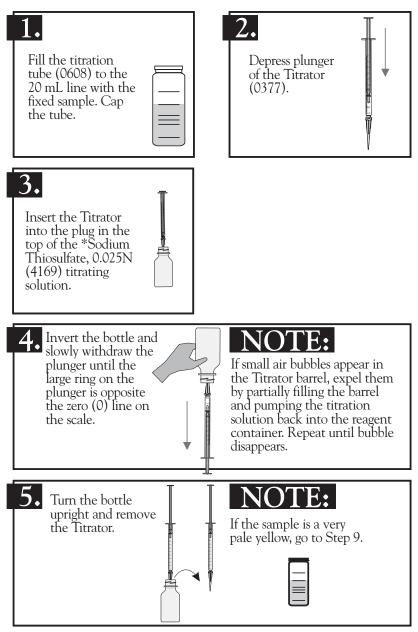
Kit Contents 2
Test Procedure
Part 1: Collecting a Water Sample
Part 2: Adding the Reagents 4
Part 3: Titration
EPA Compliance
Dissolved Oxygen Fact Sheet 10
General Safety Precautions
Use Proper Analytical Techniques 14
Material Safety Data Sheets 15
Kit Diagrams 21
Short Form Instructions Back Cover

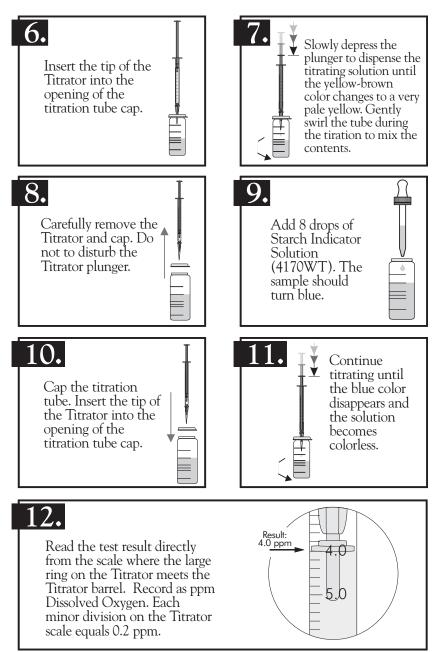

KIT CONTENTS

QUANTITY	CONTENTS	CODE
30 mL	*Manganous Sulfate Solution	*4167-G
30 mL	*Alkaline Potassium Iodide Azide	*7166-G
50 g	*Sulfamic Acid Powder (7414 Kit)	*6286-H
30 mL	*Sulfuric Acid, 1:1 (5860 Kit)	*6141WT-G
60 mL	*Sodium Thiosulfate, 0.025N	*4169-H
30 mL	Starch Indicator Solution	4170WT-G
1	Spoon, 1.0 g, plastic (7414 Kit)	0697
1	Direct Reading Titrator	0377
1	Test Tube, 5-10-12.9-15-20-25 mL, glass, w/cap	0608
1	Water Sampling Bottle, 60 mL, glass	0688-DO


***WARNING:** Reagents marked with a * are considered hazardous substances. To view or print a Material Safety Data Sheet (MSDS) for these reagents see MSDS CD or our website. To obtain a printed copy, contact us by e-mail, phone or fax..

To order individual reagents or test kit components, use the specified code numbers.

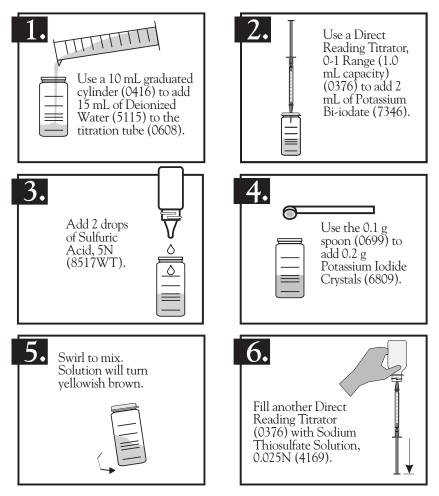

PART 1 - COLLECTING THE WATER SAMPLE



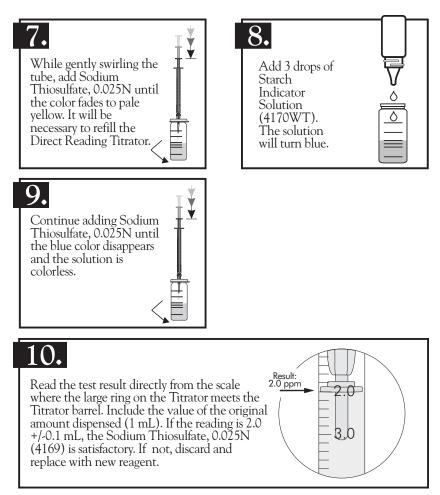
PART 2 - ADDING THE REAGENTS

PART 3 - THE TITRATION

NOTE:


If the plunger ring reaches the bottom line on the scale (10 ppm) before the endpoint color change occurs, refill the Titrator and continue the titration. Include the value of the original amount of reagent dispensed (10 ppm) when recording the test result.

NOTE:


When testing is complete, discard titrating solution in Titrator. Rinse Titrator and titration tube thoroughly. DO NOT remove plunger or adapter tip.

EPA COMPLIANCE

To qualify as an EPA accepted test, and to achieve the greatest accuracy, the Sodium Thiosulfate Solution, 0.025N (4169) must be standardized daily. This procedure follows Standard Methods for the Examination of Water and Wastewater. Numbers in () are for LaMotte products. These products are not included in this kit but can be ordered from LaMotte Company by using the specified code number.

EPA COMPLIANCE

GENERAL SAFETY PRECAUTIONS

USE PROPER ANALYTICAL TECHNIQUES

SHORT FORM INSTRUCTIONS

Read all instructions before performing test. Use this guide as a quick reference.

- 1. Fill Water Sampling Bottle (0688-DO).
- 2. Add 8 drops of *Manganous Sulfate Solution (4167).
- 3. Add 8 drops of *Alkaline Potassium Iodide Azide (7166).
- 4. Cap and mix.
- 5. Allow precipitate to settle.
- 6. Use the 1.0 g spoon to add *Sulfamic Acid Powder (6286) or add 8 drops of Sulfuric Acid, 1:1 (6141WT).
- 7. Cap and mix until reagent and precipitate dissolve.
- 8. Fill test tube (0608) to the 20 mL line.
- 9. Fill Titrator with *Sodium Thiosulfate, 0.025N (4169).
- 10. Titrate until sample color is pale yellow. DO NOT DISTURB TITRATOR.
- 11. Add 8 drops of Starch Indicator (4170WT).
- **12.** Continue titration until blue color just disappears and solution is colorless.
- 13. Read result in ppm Dissolved Oxygen.

LaMOTTE COMPANY

Helping People Solve Analytical Challenges® PO Box 329 • Chestertown • Maryland • 21620 • USA 800-344-3100 • 410-778-3100 (Outside U.S.A.) • Fax 410-778-6394 Visit us on the web at www.lamotte.com

Field Data, Calibration, and Chain of Custody Sheets

Coalition to Save Hempstead Harbor

Water-Monitoring Data Sheet, Core Program

Collection Date	: 🗆 Wee	d. 🗆 other		/ /2019	Time:		
GPS Land Refer	ence:				BP:	D	epth:
Monitor Name:	Carol D	iPaolo, Mark Ri	ng, Michelle Lap	inel, Anastasia Y	'ankopoulos, To	ny Alfieri,	
Site Name: 🗆 CS	SHH #1,	Beacon 11		Lo	ocation: Hemps	stead Harbo	r
Weather: 🗆 for	g/haze 🛛	🗆 drizzle 🗆 inte	ermittent rain	rain 🗆 snow 🗆	🛛 clear 🗆 partly	y cloudy	
% Cloud Cover:	□ 0%	□ 25% □ 50%	% 🗆 75% 🗆 10	00% other			
Wind Direction	: 🗆 N		S S SE SV	V 🗆 E 🗆 W V	elocity: Date	_kt (mph) <u>Amount</u>	
Rainfall:	Previou	is 48 hrs accum	ulation ulation ulation	_mm _			-
Tidal Stage:		□ incoming	outgoing	hours to hig	h tide:	H:	L:
Water Surface:		🗆 calm	🗆 ripple	□ waves	□ whitecaps		
Water Color:		normal:abnormal:	brownbrown	greengreen	 other other 		
Water Observa	tions:	odorsoil slick	sea weedfloatables	 dead crabs bubbles ice on (SAV)	 foam turbidity (si 	uspended pa	-
Comments							
		type	sam	ple taken: 🗌 su	rface 🗆	_ below surf	ace
Human Activitie		ravel op.	(Gladsky	Ra	ison	
	DiNapo	li	Global, kayaks	/fuel she _ crew she Matinecock Pt	other ellfishing		near
Anglers, at be	eaches _			at piers			
Other							
🗆 Styrofoam, ci	 ups	plastic pieces	Cans	.) □ Paper pards pie	ces		

Water-Monitoring Data Sheet

Station: _		G	PS: <u>40.</u>		073	Time:			
	Sample	Temp (°C)	Salinity		DO	pH (ppm)	Secchi (m)	Chlorophyll	Turbidity
	Depth (m)	Temp (C)	(ppt)	(%)	(ppm)		Secon (m)	(ug/L)	(NTU)
Wind	Surface		(PPC)	(70)	(ppiii)			(46/ -)	(110)
wind	0.5								
	1								
	2								
Air °C	3								
Alf C									
	4 5								
Denset	0.5								
Repeat	1								
	2								
	3								
	4								
	5								
	5								
Station: _		G	PS: <u>40.</u>	(073	Time:			
	Comple	T (00)	Callatio					Chilenserie	Taugh islina
	Sample	Temp (°C)	Salinity		DO	pH (ppm)	Secchi (m)	Chlorophyll	Turbidity
	Depth (m)		(ppt)	(%)	(ppm)			(ug/L)	(NTU)
Wind	Surface								
	0.5								
	1								
	2								
	3								
	4								
Air °C	5								
	6								
	7								
	8								
	9								
	10								
	11								
Station:		GF	PS: <u>40.</u>	<u>C</u>)73	Time	•		
	Sample	Temp (°C)	Salinity		DO	pH (ppm)	Secchi (m)	Chlorophyll	Turbidity
	Depth (m)		(ppt)	(%)	(ppm)			(ug/L)	(NTU)
Wind	Surface								
	0.5								
	1								
	2								
	3								
	4					<u> </u>			
Air °C	5					ļ			
	6								
	7								
	8								
	9					ļ			
	10					ļ			
	11								

Water-Monitoring Data Sheet

Wildlife Observations

Date _____

	RDS							
	Upper Harbor				Low	er Harbo	r	
	Cormorants							
	Ducks, mallards						_ducklin	gs
	Egrets, great							
	snowy							
			goslings				gosling	S
	brandts							
	Gulls, hooded							
	Herons, blue							
	night, green							
	Kingfisher, belted							
	Ospreys						chicks	
	Plover-type, killdeer							
	Swans, mute						cygnet	s
	Other							
Æ	LLIES/JELLYFISH							
אבוו ע ר	Comb, sea walnuts: CSHH stations	□#1	□#2	□#3	□#4	□#5	□#6	□#7
-	como, sea wantats. Comi stations							
		□#8-10	□#11	□#12	2 □#13			
	sea gooseberries: CSHH stations	□#1	□#2	□#3	□#4	□#5	#6	
		□#8-10_		l□#12	2□#13			
_							n#7	
	Lion's mane: CSHH stations □#1			U#4	□#ℑ		LI#7	
	Moon: CSHH stations □#1□#	2	#3□	#4	#5□	#6□#	¥7	
TT?	SH							
	Daitfish							
7	Dive							
_	Developer							
7	BHEKEE							
	BunkerStriped bass							
	Striped bass							
	And the second sec							
	Striped bass							
	Striped bass Small shrimp RABS							
	Striped bass Small shrimp RABS Asian shore							
	Striped bass Small shrimp RABS Asian shore Blue-claw							
	Striped bass Small shrimp RABS Asian shore							
	Striped bass Small shrimp RABS Asian shore Blue-claw							
	Striped bassSmall shrimp XABS Asian shore Blue-claw Horseshoe							

Sonde Calibration Datasheet Eureka Manta+ 35

Calibrations • Person:	_ Date:	Tin	ne:	
Post-Readings Person:				
Handheld S/N:				
♦ COMPLETE BEFORE SAMPLING ♦		♦ COMPLETE A		
 Fill cup with <u>AIR-SATURATED WATER</u> (Reagent Grade Water) Record <u>CHLOROPHYLL (µg/L)</u> reading in air-saturated wa 	ter	th <u>AIR-SATURATEI</u> <u>Post-Read</u>	ings	
Chi µg/L (3) Calibrate <u>DISSOLVED OXYGEN (HDO%)</u> Barometric Pressure (mmHg)	Tu	rbidity 0 NTU [
Pre-Calibration Reading HDO%		Post-Real NTU 100 NTU		
SRF HDO%		Post-Rear		<u>0,000 µS/cm)</u>
→1ª Cal Value: NTU	PH (4) Loosen cu	p to read <u>DEPTH ((</u>		
Pre-Calibration Reading Turbidity NTU		Post-Rea	ding	
			ding Turbidity Standard 100 NTU	Conductivity Standard 50,000 µS/cm
Turbidity NTU →2 nd Cal Value: NTU <u>Pre-Calibration Reading</u> Turbidity NTU	Manufacturer	Depth m • • • • • • • • • • • • • • • • • •	Turbidity Standard	Standard
Turbidity NTU NTU NTU NTU Pre-Calibration Reading Turbidity NTU Post-Calibration Reading Turbidity 100 NTU SRF* SRF*	Manufacturer Lot Number Expiration	Depth m • • • • • • • • • • • • • • • • • •	Turbidity Standard	Standard
Turbidity NTU →2 nd Cal Value: NTU Pre-Calibration Reading Turbidity NTU Post-Calibration Reading Turbidity 100 NTU SRF* *SRF: Will need to look up in Cal Records (5) Calibrate CONDUCTIVITY STANDARD (50,000 µS/cm) Pre-Calibration Reading	Lot Number	Depth m • • • • • • • • • • • • • • • • • •	Turbidity Standard	Standard
TurbidityNTUNTU →2 nd Cal Value:NTU <u>Pre-Calibration Reading</u> TurbidityNTU <u>Post-Calibration Reading</u> Turbidity <u>100 NTU</u> SRF* *SRF: Will need to look up in Cal Records (5) Calibrate <u>CONDUCTIVITY STANDARD (50,000 µS/cm)</u> <u>Pre-Calibration Reading</u> SpCond µS/cm <u>Post-Calibration Reading</u>	Lot Number Expiration HDO% (1) Chl a (0 µ	Depth m	Turbidity Standard 100 NTU Range Table 97 -	Standard
TurbidityNTUNTU →2 nd Cal Value:NTU <u>Pre-Calibration Reading</u> TurbidityNTU <u>Post-Calibration Reading</u> Turbidity <u>100 NTU</u> SRF* *SRF: Will need to look up in Cal Records (5) Calibrate <u>CONDUCTIVITY STANDARD (50,000 µS/cm)</u> <u>Pre-Calibration Reading</u> SpCond µS/cm	Lot Number Expiration HDO% (1 Chl σ (0 μ Turbidity Turbidity	Depth m	Turbidity Standard 100 NTU tange Table 97 - -0.30 -3.00 97.0 -	Standard 50,000 µS/cm

*See page 2 for pH calibration checks.

Sonde Calibration Datasheet

Eureka Manta+ 35

	pH 7 Standard	pH 10 Standard
Manufacturer		
Lot Number		
Expiration		

Change pH reference standard monthly. Date of pH reference standard replacement:

Accuracy R	ange Table
рН 7	6.8 – 7.2
рН 10	9.8 - 10.2

Nassau Co. DOH PHL	FORM NAME:	COALITION TO SAVE HEMPSTEAD HARBOR			
209 Main Street					
Hempstead, NY 11550	□ QC	Equip Maint	Training	Comp Doc	☑ Other
LABORATORY SECTION	Form. No.:	Beach Monitoring Daily Sampling Log - 1	Rev: 2		
Chemistry					
Environmental Microbiology	Date: 4/8/201	1	Created By:	CONNIE IANNUCCI	
Clinical Microbiology					

Beach Monitoring Daily Sampling Log

COALITION TO SAVE HEMPSTEAD HARBOR

Elap ID #10339		[DIVISION O 209 MAIN S	DUNTY DEPARTMENT OF HEALTH F Public HEALTH LABORATORIES STREET, HEMPSTEAD, NY 11550 L DIRECTOR; CONNIE IANNUCCI, MICROBI						572-1202	DATE 2 FAX (516) 572-1206		POL	SAMPLES SUBMITT YSTYRENE VESSEL SODIUM THIOSU INLESS OTHERWISE	S CONTAINING
							erature			(TAX (310) 372-1200	L	· · ·	y Use Only	
Field No.	Area No.	Point No.	Sample Type	Location	Time	Air	Water	Wind	Weather	Wave Height		Fecal Col		Enterococci	
CSHH-1	10		5	BEACON ELEVEN							Lab Number	CFU/10		CFU/100 mL	Comments
CSHH-1	10		5	BELL BUOY 6											
CSHH-3	10		5	RED MARKER GLEN COVER CREEK											
CSHH-4	10		5	BAR BEACH SPIT											
CSHH-5	10		5	MOTT'S COVE											
CSHH-6	10		5	EAST OF FORMER TNH INCINERATOR											
CSHH-7	10		5	BRYANT LANDING											
CSHH-8	10		5	GLEN COVE STP											
CSHH-9	10		5	FIRST PIPE WEST OF STP OUTFALL											
CSHH-10	10		5	PIPE AT CORNER OF SEAWALL WEST OF STP OUTFALL											
CSHH-11	10		5	50 YARDS EAST OF STP OUTFALL											
CSHH-12	10		5	EAST OF STP OUTFALL BY BEND IN SEAWALL											
CSHH-13	10		5	60 FEET WEST OF MILL POND WEIR											
															<u> </u>
CO	MMENTS/F	REMARKS										*	ESTIMA	TED COUNT	
REPO	RT TO:		TIONAL FA									TNTC = "T		EROUS TO COUNT"	
	A ENTRY	MINEOLA	, NY 11501	PROOFED											
DA	AENTRI														P
	-	TEST oliform CFU		MF-QN SM 9222	HOD D-2006		TEMP CO	NTROL:			TIME RECEIVED:			DATE ANALYZED:	
	Entero	cocci CFU	/100 ml	MF-QN EPA 1600		l					DATE RECEIVED:				
				E.			SAMPLE A	ACCEPTA	BLE:	YES 🗌	NO 🗌		ANALYSIS	S SUCCESSFUL:	YES NO
The result	s provided	on this rep	ort have be	en produced in compliance with "NELAC" (Na						Name:		Title:			Date:
				e identified sample. Any deviations from the d. This report shall not be reproced except in					for	Comment	te •				
				ory certification status is maintained under EL				Page 1 of	2	Comment					

Nassau Co. DOH PHL	FORM NAME:	COALITION TO SAVE HEMPSTEAD HARBOR			
209 Main Street					
Hempstead, NY 11550	□ QC	Equip Maint	Training	Comp Doc	☑ Other
LABORATORY SECTION	Form. No.:	Beach Monitoring Daily Sampling Log - 1	Rev: 2		
Chemistry					
Environmental Microbiology	Date: 4/8/201	1	Created By:	CONNIE IANNUCCI	
Clinical Microbiology					

			Beach N	Ionitoring Daily Sampling Log						COA	ALITION TO SA	VE HEMPSTE	AD HARBOR		
Elap ID		١	IASSAU Cr	OUNTY DEPARTMENT OF HEALTH								AL	L SAMPLES SUBMIT	TED IN STE	ERILE
#10339		D	IVISION OF	F PUBLIC HEALTH LABORATORIES			Carol D					PO	LYSTYRENE VESSE	LS CONTA	INING
				STREET, HEMPSTEAD, NY 11550			COLLECT				DATE		SODIUM THIOS		
THOMAS E	DWARDS	LEAD TE	CHNICAL [DIRECTOR; CONNIE IANNUCCI, MICROBIOL	OGY TEC			TELEPHO	DNE (516) 5	572-1202 F	AX (516) 572-1206		UNLESS OTHERWIS	E SPECIFI	ED)
Field	Area	Point	Sample	Location	Time	Temp	erature	Wind	Weather	Wave		Laborate Fecal Coliforms	ory Use Only	-	
No.	No.	No.	Туре	Location	rime	Air	Water	wind	vveatrier	Height	Lab Number	CFU/100 mL	Enterococci CFU/100 mL	Com	nments
CSHH-14	10		5	NW CORNER OF POWER PLANT ~ 50 YARDS FROM CEMENT OUTFALL											
CSHH-14A	10		5	CEMENT OUTFALL ADJACENT TO POWER PLANT											
CSHH-15	10		5	NW CORNER OF TAPPEN POOL											
CSHH-15A	10		5	SCUDDER'S POND OUTFALL @ SEAWALL N. OF TAPPEN POOL											
CSHH-15B	10		5	SCUDDER'S POND WEIR											
CSHH-16	10		5	OUTER HARBOR MIDWAY BETWEEN EAST/WEST SHORE											
CSHH-17	10		5	OUTSIDE RESTRICTED AREA OF CRESCENT BCH ACROSS FROM WHITE BLDG											
CSHH-17A	10		5	INSIDE RESTRICTED AREA OF CRESCENT BCH ACROSS FROM WH BLDG & STREAM											
							TRIP BL	ANK							
CON REPORT		200 COU	TIONAL FA NTY SEAT A, NY 11501	DRIVE									NTED COUNT		
DAT	A ENTRY			PROOFED							<u>24hr rain:</u>		<u>48hr rain:</u>		
<u>ابری</u>		TEST		TECHNOLOGY MET		1	TEMP CO				TIME RECEIVED:		DATE ANALYZED:		
		oliform CFI		MF-QN SM 9222 I	D-2006			NTROL:					DATE ANALTZED:		
l	Entero	cocci CFU	/100 mi	MF-QN EPA 1600		l	SAMPLE		BI E'	YES 🗌	DATE RECEIVED:		IS SUCCESSFUL:	YES 🗌	
LABORATO									 			VERIFICATION			
The results p	rovided or	this repor	t have been	n produced in compliance with "NELAC" (Nation identified sample. Any deviations from the acc						Name:		Title:		Date:	
non-potable s	samples a	e appropri	ately noted.	 Identified sample. Any deviations from the acc . This rpeort shall not be reproced except in fu y certification status is maintained under ELAP 	Il without th	ne written a				Comment	s:				

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section		Section B Required Pro	viact I	nform	nation:						ion C	forma	ion:															Г	Demo			01	
Compan		-	Carol							Atten		Ionna	IOII.																Page):	1	Of	1
Address		Copy To:	Caro		1010							Name:													_								
	NY 11579									Addre																			Re	nulat	ory Agenc	v	
Email:	cshh@optonline.net	Purchase Ord	ler #:								Quot	te:																		guiut	ory Agenie	y	
Phone:	(516) 801-6792 Fax	Project Name		HEM	IPSTEAD	HARBOR	MONITO	RING				ect Ma	nader	:	bet	tv ha	rriso	n@	pad	cela	ibs d	com							S	itate /	Location		
	ed Due Date:	Project #:									Profi		728		_												-		-		NY		
																				Re	eaue	sted	Anal	vsis	Filte	red (Y/N)						
	MATRIX Drinking W Water	CODE ater DW WT	(see valid codes to	AB C=COI		COLLE	ECTED		LECTION			Pi	ese	rvati	ves		N.N.	_						,						7			
#1	Waste Wat Product SAMPLE ID Oil One Character per box.	er WW P SL OL WP AR OT	MATRIX CODE (see va	SAMPLE TYPE (G=GRAB	STA	ART	E	۱D	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	4			103	lon	chicae Taoi	Analyses Lest	03,											Residual Chlorine (Y/N			
ITEM	(A-Z, 0-9 / , -) Tissue Sample Ids must be unique	TS	MATRI	SAMPL	DATE	TIME	DATE	TIME	SAMPL	# OF C	Unpre	H2SO4 HNO3	нci	NaOH	Na2S2O3	Methanol	Other	An	No2/NO3,	NO2	NH3	TKN								Residu			
1	CSHH #1		wт	G														1	x	x	x	x											
2	CSHH #3		wт	G														:	x	x	x	x											
3	CSHH #6		wт	G														1	x	x	x	x											
4	CSHH #7		wт	G														1	x	x	x	x											
5	CSHH #8		wт	G														2	x	x	x	x											
6	CSHH #12		wт	G														:	x	x	x	x											
7	CSHH #13		wт	G															x	x	x	x											
8	CSHH #14A		wт	G														:	x	x	x	x											
9	CSHH #15A		wт	G														:	x	x	x	x											
10	CSHH #16		wт	G														×	$\langle \rangle$	x :	x	x											
11			WТ	G																													
12		_	WТ			_																											
	ADDITIONAL COMMENTS	F	RELING	QUISH	IED BY / A	FFILIATIO	N	DATE		Т	IME				ACC	EPTEI	BY/	AFFI	LIAT	ION				D	ATE		TIN	1É			SAMPLE C	ONDITIONS	
					1										_										_								
							R NAME			RE																			-	c	uo p	_	Ø
																		_											TEMP in C		Received c ce (Y/N)	ed) fer	t ble.
						SIG	NATURE	of SAMPI	ER:										D	ATE	Sig	ned:								2	Zec X/N	Seal- Seal- VNN	San ntac (Y/N

Electronic Data Format Examples

	ALITION TO S			CSHF	l Water	-Moni	toring F	Progra	m 2018	8						
-																
Date	Water Te Surface*	emp (°C) Bottom**	Salinity Surface	(ppt) Bottom	DO (p Surface	pm) Bottom	pH (ppr Surface	n) Bottom	Air Temp (°C)	Secchi (m)	Chlor a Surface	<u> </u>	Turbidit Surface	y (NTU) Bottom	Depth(m) (Total)	Time (AM)
	Cunaco	Dottom	Curraco	Dottom	Curraco	Dottom	Canaco	Dettern	(-)	(,	Cunace	Dottom	oundoo	Bottom	(1010.1)	(/)
CSHH #1 ·	- Beacon 1	1														
10/31/18	12.02	12.23	24.55	24.7	8.20	8.25	7.68	7.70	5.5	2.2	7.19	7.28	1.59	2.01	3.38	8:05
10/31/18	12.13	12.24	24.62	24.69	8.28	8.25	7.70	7.71			6.04	7.86	1.6	4.76	3.33	
10/31/18	12.00	12.30	24.36	24.54	8.24	8.30	8.23	8.10							3.75	8:10
10/31/18	12.10	12.30	24.46	24.53	8.33	8.25	8.08	8.04							3.75	8:20
10/24/18	12.80	12.84	21.65	21.71	8.29	8.29	7.60	7.63	8.4	2	8.74	9.95	2.11	4.62	4.53	7:55
10/24/18	12.82		21.78	21.82	8.35	8.28	7.64	7.66			11.18	11.96	6.75	10.35	3.63	8:00
10/24/18	12.70	12.90	23.72	23.85	8.04	8.02	7.40	7.57							3.9	8:05
10/17/18	16.69	17.36	22.19	22.36	7.75	6.84	7.22	7.56	10.8	1.5	12.16		2.97	3.45	4.51	7:50
10/17/18	16.74	17.39	22.22	22.36	6.87	6.83	7.57	7.57			11.99	13.74	2.72	4.12	4.50	7:57
10/10/18	20.83	20.88	24.88	25.19	6.44	5.72	7.35	7.41	21.2	1.75	10.52	8.81	3.14	5.16	3.24	8:01
10/10/18	20.86	20.89	25.02	25.34	5.28	5.25	7.40	7.42			10.57	9.02	2.96	4.57	3.22	8:06
10/3/18	20.91	21.06	25.49	25.96	7.79	7.27	7.34	7.55	20.3	1.4	26.77		2.38	2.92	4.23	7:50
10/3/18	20.86	21.07	25.30	25.82	7.44	7.17	7.58	7.53			21.45	26.56	2.67	5.11	4.34	
9/26/18	20.79	20.89	24.99	25.61	5.50	5.56	7.44	7.48	22.4	1.3	12.86		3.16	5.52	2.86	7:57
9/26/18	20.80	20.91	24.96	25.68	5.52	5.49	7.44	7.49			15.91		4.08	5.34	2.89	
9/19/18	23.09	23.17	25.42	25.90	5.89	5.64	7.44	7.46	23.5	1.5	19.76		3.16	3.56	5.03	9:11
9/14/18	22.51	22.52	25.28	25.40	4.72	2.98	7.02	7.16	21.7	1.25	22.35		3.90	3.52	2.98	8:05
9/14/18	22.52	22.52	25.44	25.46	5.57	3.20	7.19	7.18	21.6		19.77	18.96	3.95	4.02	2.92	8:07
9/5/18	25.79	24.65	26.33	26.78	8.30	4.51	7.82	7.31	25.8	1	89.01	33.9	4.43	2.47	5.26	7:55
9/5/18	25.81	24.70	26.25	26.74	7.98	4.98	7.87	7.35			84.02	32.5	3.61	2.16	5.21	
3/29/18	24.96	24.88	25.30	25.78	5.44	3.66	7.17	7.32	29.2	1.5	21.20	22.6	2.89	5.04	3.71	7:50
3/29/18	24.95	24.88	25.34	25.75	3.57	3.55	7.26	7.32			21.07	22.6	3.17	4.03	3.65	7:55
3/23/18	23.76	23.86	26.34	26.48	5.48	4.24	7.62	7.49	20.5	1.5	29.67	21.90	3.47	5.00	5.29	8:00
3/23/18	23.78	23.86	26.36	26.43	4.93	4.64	7.62	7.51	~ -		30.02	23.3	3.49	3.47	5.22	
3/15/18	23.21	23.21	25.96	26.01	4.02	2.17	7.06	7.09	23.7	1.75	16.97	16.6	3.28	3.29	3.81	7:55
3/15/18	23.21	23.21	25.95	26.01	4.84	2.23	7.12	7.10			17.43	13.6	2.35	2.86	3.94	
3/8/18	24.08	22.54	26.36	26.88	6.22	1.83	7.51	7.14	27.1	1	88.58	22	3.72	1.85	6.51	7:58
3/8/18	24.08	22.55	26.43	26.92	4.59	1.68	7.57	7.15			98.77	24.6	3.97	1.44	6.51	
3/2/18	23.68		25.61	26.05	4.44	3.03	7.13	7.22	26.0	1.5	10.91	13.1	3.4	4.11	4.25	7:55
7/17/18			25.51	25.64	3.58	3.45	7.29	7.29	25.6	1.25	17.31	24.4	4.03	4.30	2.33	8:05
7/17/18	21.11	20.99	25.46	25.63	3.38	3.36	7.27	7.28	04.0		19.93	26.8	4.02	7.47	2.76	8:10
7/11/18	21.48	19.39	25.83	26.14	8.35	4.33	7.91	7.40	24.0	1	27.21	48.5	3.56	8.92	4.74	7:55
7/3/18	22.01		25.20	25.68	3.99	3.56	7.24	7.25	25.3	1.4	33.65	41.2	3.04	3.69	2.52	7:58
6/27/18	20.22	19.36	25.08	25.60	6.39	4.80	7.51	7.42	22.0	1.25		21.9	3.90	6.50	2.64	7:50
6/27/18	20.19	19.13	25.12	25.67	7.06	5.16	7.53	7.43	10.0	4.4	42.91	19.8	4.25	6.33	2.86	8:00
6/20/18	19.87	18.90	24.80	25.18	7.30	6.68	7.71	7.69	19.6	1.1	30.89		4.66	4.56	4.36	8:00
6/20/18	19.74	8.70	24.89	25.21	6.85	6.63	7.72	7.66	00.0		27.50	40.99	4.37	4.79	4.27	8:05
5/13/18	17.39	17.02	24.72	24.99	7.42	6.39	7.73	7.64	20.0	1	37.32		4.50	6.08	3.26	8:00
5/13/18	17.38	17.09	24.73	25.00	6.94	6.73	7.73	7.66	15.0	4	32.38	40.40		7.19	3.36	0.00
6/6/18	17.07	17.04	22.04	22.27	11.16	11.26	8.17	8.19	15.9	1	47.74	59.12		2.18	4.59	8:00
6/6/18	17.05		22.01	22.24	11.26	11.15	8.18	8.18	17.0	1.0	51.35	65.46		2.77	4.62	7.50
5/30/18	15.86		24.29	24.60	7.62	7.06	7.54	7.64	17.8	1.2	25.26	16.76		2.98	1.92	7:50
5/30/18	15.71		24.51	24.68	6.94	6.94		7.64	20.0	4.05	19.79	16.41		3.86	2.06	8:05
5/23/18	14.75	14.42	24.49	24.69	6.52	6.59	7.70	7.74	20.6	1.25	5.45	7.24	0.06	0.48	3.96	9:45
ad numb	ers indicate	that the ·	eadingo w			high but	reflect stat	ion condi	tions							
	s indicate r					ingri but	reneut stat									[
	s indicate r				Plue											
	indicate rep				rius.											
Jey Imes	inuicate rep	Jucate sul	veyorial	FIU Plus.									1			

	ALITION TO	SAVE		CSHF	l Water	-Moni	toring F	rogra	m 2018	8						
Date		emp (°C)	Salinity		DO (p Surface		pH (ppi		Air Temp		Chlor a	· • /		<u> </u>	Depth(m)	
C600 #2	Surface* - Bell Mark	Bottom**	Surface	Bottom	Surface	Bottom	Surface	Bottom	(°C)	(m)	Surface	Bollon	Surface	Bollom	(Total)	(AM)
10/31/18	12.94	13.46	25.84	25.96	9.03	8.70	7.84	7.84	8.9	3.25	8.25	7.19	0.83	3.76	7.14	8:46
10/24/18			high wind			0.70	7.04	7.04	0.3	0.20	0.20	7.13	0.00	5.70	7.14	0.40
10/17/18	17.87	17.95	22.57	22.63	7.34	7.29	7.65	7.66	10.9	2.5	10.10	11.05	1.43	2.79	8.82	8:24
10/10/18	20.93	20.94		25.96	6.18	6.02	7.60	7.57	21.6	2.5	9.58	9.75	1.84	3.09	6.33	8:25
10/3/18	20.95	20.77		25.90	7.88	6.95	7.69	7.54	20.5	2.5	16.60	10.58	1.55	1.93	8.89	8:26
9/26/18	21.27	21.36	26.25	26.37	7.38	6.45	7.65	7.58	23.3	1.6	9.95	6.15	2.53	5.85	7.54	8:30
9/19/18	23.19	22.95		25.97	6.65	5.72	7.62	7.47	24.2	1.75	12.04	8.71	2.57	3.03	7.63	9:42
9/14/18	22.43	22.55	26.21	26.81	5.77	4.74	7.49	7.45	21.6	1.5	19.84	9.41	2.73	8.63	6.49	8:35
9/5/18	26.24	24.53	26.64	26.77	11.03		8.18	7.53	26.2	1.5	24.82	15.5	2.35	4.43	7.65	9:45
8/29/18	25.09	24.25	26.09	26.33	7.06	6.43	7.84	7.50	29.6	0.9	51.89	22.7	2.77	2.81	7.16	8:25
8/15/18	23.12	23.10	26.67	26.79	4.61	4.02	7.45	7.43	23.6		35.43	32.3	2.63	3.40	6.79	8:25
8/8/18	24.85	21.70	26.23	26.91	8.93	1.68	8.04	7.20	28.3	1.25	68.62	11.8	3.31	0.70	9.86	9:56
8/2/18	23.26	22.57	26.41	26.49	6.73		7.57	7.38	28.3	1.5	17.12	14.8	2.34	12.12	8.30	8:20
7/17/18	20.50	18.94	26.06	26.37	6.01	4.29	7.71	7.52	26.9	1.5	11.19	26.7	1.81	9.76	7.19	8:35
7/11/18	21.46	18.24		26.49	9.89		8.12	7.53	23.3	1.5	22.76	35.7	2.07	6.01	8.61	10:06
7/3/18	22.03	17.91	25.67	26.22	7.95		7.91	7.42	26.5	1.75	29.27	17.7	1.77	4.38	6.99	8:24
6/27/18	20.03	18.52	25.33	25.99	8.12	6.08	7.90	7.66	21.8	1.30	31.72	19.2	2.98	9.36	7.60	8:22
6/20/18	19.19	16.03	25.26	25.62	8.37	5.81	7.96	7.57	19.6	1.75	13.61	17.5	1.84	7.78	7.53	8:28
6/13/18	17.37	16.12		25.49	8.53	5.23	8.06	7.57	20.9	1.50	20.78	21.9	1.39	6.32		8:30
6/6/18	17.12	17.05	22.46	22.51	9.76		8.32	8.28	17.9	1.5	28.42	58.6	1.62	1.78	7.85	8:36
5/30/18	16.11	14.91		25.20	10.07	9.58	8.04	7.93	16.9	1.25	39.51	27.1	1.75	3.78	6.57	8:30
5/23/18	14.82	13.38	24.81	25.24	8.67	7.26	7.99	7.86	20.6	2	7.31	3.17	-2.27	-1.15	7.26	10:25
0/20/10					0.01				20.0	-		0				
Red numb	ers indicate	e that the r	eadings we	ere unusu	ally low or	hiah but	reflect stat	ion condit	tions							
			loadinge in													
CSHH #16	6 - Outer H	arbor. Mic	way E/W S	Shore an	d N/S Bou	ndary of	Shellfish	Harvesti	ng Area							
10/31/18	13.68	13.79	26.06		8.52	8.52	7.86	7.85		2.5	7.73	6.28	1.23	2.53	9.22	9:00
10/24/18			high wind			0.02	1.00	1.00	0.1	2.0	1.10	0.20	1.20	2.00	0.22	0.00
10/17/18		· ·	to lost anch			nlv										
10/10/18	20.99	20.91	25.83	25.91	7.04	6.15	7.67	7.61	22.2	2.75	10.49	6.23	1.23	3.16	9.13	8:50
10/3/18	21.05	20.94	25.80	26.11	7.66	7.12	7.65	7.52	20.8	2.75	10.11	11.07	1.17	5.53	10.26	8:54
9/26/18	21.42	21.44	26.20	26.40	6.57	6.08	7.66	7.61	24.5	1.7	7.28	4.66	2.78	7.40	9.54	8:51
9/19/18	23.15	22.58	26.06	26.66	6.54	3.72	7.58	7.31	25.1	2.5	8.18	5.13	1.49	7.68	10.59	10:00
9/14/18	22.51	22.53	26.64	26.80	6.20	5.18	7.59	7.49	22.7	1.8	17.52	8.46	2.51	8.98	8.88	8:54
9/5/18	26.24	24.14	26.66	26.98	10.81	3.64	8.19	7.39	27.6	1.75	30.36	7.72	2.30	5.45	10.39	10:02
8/29/18	24.73	23.54	26.03	26.55	7.55	3.70	7.82	7.34	28.5	1.5	43.88	11.20		8.84	8.84	8:45
8/23/18	23.63	23.59	26.45	26.60	7.0	4.72	7.72	7.52	20.8	1.75	26.62	16	2.15	8.08	10.98	9:20
8/15/18	23.37	23.30	26.81	26.90	6.08	5.37	7.68	7.63	23.9	1.75	22.84		2.20	2.65	8.73	8:46
8/8/18	24.91	20.79	26.21	20.30	10.76	1.48	8.21	7.22	26.8	1.25	105.23	6.59	4.24	1.72	10.89	10:15
8/2/18	23.66	22.51	26.25	26.55	6.16	3.93	7.65	7.44	26.5	1.75	16.61	12.90		11.01	8.96	8:41
7/17/18	20.57	18.53	26.12	26.46	6.96	5.25	7.79	7.44	26.9	1.5	9.44	16.29		10.60	8.80	9:05
7/11/18	21.71	16.79	26.12	26.81	10.19		8.17	7.38	23.1	1.5	18.74	22.48		7.76	11.11	10:25
7/3/18	21.71	17.37	25.86	26.31	9.23	4.20	8.08	7.43	28.7	1.75	19.02	14.81		11.66	8.84	8:45
6/27/18	19.85	18.33	25.63	26.06	8.61	6.49	7.95	7.73	22.30	1.8	18.02	21.44				8:45
	19.85	15.21	25.33	25.77	8.78	5.01	8.01	7.56		2	13.92	16.88				9:02
6/20/19		16.60	25.33	25.39	9.36	8.50	8.16		21.4	2 1.75	12.92	36.29		5.02		9.02 8:45
6/20/18	17.58			25.39				7.94								8:45 9:25
6/13/18		16.81	22.46	22.01	11.98	9.48	8.33	8.09	17.7	1.5	29.31	46.86		4.77		
6/13/18 6/6/18	17.17		25 10	25.26	10.22	7 20	0 06	7 76	17 2	1 5	27 1	20 60	1 66	6 60	0 77	
6/13/18 6/6/18 5/30/18	16.43	14.19	25.10	25.36	10.33	7.20	8.06	7.76	17.3	1.5	27.1	20.69	1.66	6.50	9.77	9:35
6/13/18 6/6/18	16.43			25.36	10.33	7.20	8.06	7.76	17.3	1.5	27.1	20.69	1.66	6.50	9.77	9:35

	LITION TO			CSH⊦	l Water	-Moni	toring F	Progra	m 2018	8						
Date	Water Te	mn (°C)	Salinit	v (ppt)	DO (p	nm)	рН (ррі	m)	Air Temp	Secchi	Chlor a	(ma/l)	Turbidit		Depth(m)	Time
Date		Bottom**	Surface	Bottom	Surface	Bottom	Surface	Bottom	(°C)	(m)			Surface		(Total)	(AM)
001111 #47	Outors III			Destricts		L Deceb	Deunden									
10/31/18	13.21	13.22	st Outside 25.90	25.90	8.68	8.74	7.86	7.86	11.1	3.25	7.12	7.56	6.06	2.20	6.24	9:18
10/24/18			high wind			0.74	7.00	7.00	11.1	5.25	1.12	7.50	0.00	2.20	0.24	9.10
10/17/18		<u> </u>	to lost anch			nlv										
10/10/18	21.01	20.96	25.77	25.84	6.61	6.30	7.66	7.62	23.0	2.4	10.57	6.58	1.56	2.95	6.93	9:10
10/3/18	21.07	21.06	25.77	25.81	8.16	7.90	7.76	7.7	21.1	2.05	21.38	25.74	1.93	1.74	7.23	9:18
9/26/18	21.50	21.43	26.10	26.12	6.55	6.32	7.67	7.64	23.4	1.75	7.96	5.17	2.80	5.17	7.63	9:14
9/19/18	23.21	22.99	25.97	26.33	6.86	5.31	7.66	7.45	25.7	2	10.69	7.58	1.79	5.76	8.28	10:23
9/14/18	22.45	22.45	26.84	26.94	5.70	4.70	7.49	7.45	22.9	1.5	7.63	4.63	4.91	8.60	6.81	9:21
9/5/18	25.87	24.12	26.72	27.07	8.84	3.19	8.02	7.33	26.6	1.5	28.78	6.36	2.59	6.02	7.94	10:25
8/29/18	25.77	24.70	26.09	26.26	8.58	7.40	8.13	7.74	29.8	1.5	35.96	21.2	2.60	4.80	6.27	9:02
8/23/18	23.87	23.86	26.65	26.69	6.28	5.70	7.69	7.64	21.5	1.25	22.01	17.6	3.05	6.95	7.55	8:48
8/15/18	23.48	23.36	26.76	26.77	6.21	5.48	7.69	7.60	24.6	1.25	43.83	35.7	3.48	4.18	6.07	9:10
8/8/18	24.61	20.54	26.38	27.43	8.68	1.70	8.09	7.23	26.8	1.5	45.25	3.84	3.26	3.33	7.91	10:33
8/2/18	23.46	23.24	26.35	26.41	6.88	6.12	7.72	7.61	26.7	1.75	25.90	16.4	2.61	9.73	6.24	8:58
7/17/18	21.10	18.67	26.01	26.49	7.03	4.14	7.83	7.49	27.5	1.5	19.62	18.1	2.01	9.56	6.51	9:26
7/11/18	21.16	16.56	26.26	26.87	8.74	3.14	8.13	7.36	25.4	1.5	15.00	17.6	2.16	13.82	9.08	10:45
7/3/18	23.09	18.29	25.71	26.11	8.95	4.08	8.04	7.42	26.5	1.70	19.29	19.5	1.67	4.65	6.72	9:05
6/27/18	20.04	19.21	25.67	25.85	8.30	7.31	7.95	7.79	21.9	1.75	13.14	24.65	1.86	10.87	7.62	9:05
5/20/18	19.13	16.36	25.34	25.65	8.57	6.57	7.99	7.63	20.0	2	10.78	10.80	1.72	5.51	6.58	9:35
6/13/18	17.76	17.36	25.23	25.28	8.43	9.52	8.08	8.11	20.4	1.5	24.59	35.26		5.04	8.15	9:08
5/6/18	17.27	16.81	22.54	22.64	11.67	10.27	8.35	8.17	17.6	1.5	23.30	48.43	1.70	2.73	6.81	10:00
5/30/18	16.10	14.84	25.15	25.35	9.91	9.04	8.05	7.94	18.4	1.5	31.77	33.88	1.74	3.69	7.89	10:00
5/23/18	14.68	12.91	25.03	25.55	7.96	7.47	7.94	7.89	21.2	2	4.36	3.37	-2.34	-0.10	6.54	10:51
Red numbe	ers indicate	e that the	readings w	ere unusu	ally low or	high but	reflect stat	ion condi	tions.							
CSHH #3 -	Glen Cov	e Creek, I	Red Marke	er												
10/31/18	12.54	13.22	25.17	25.81	8.88	8.65	7.84	7.86	12.2	3.15	8.03	8.47	1.11	1.01	3.22	10:35
10/24/18			high wind				-								-	
10/17/18	17.21	17.22	22.50	22.47	7.52	7.44	7.68	7.68	12.8	2.25	7.33	12.65	1.86	1.71	4.23	9:30
10/10/18	20.95	20.90	25.29	25.56	6.68	5.90	7.59	7.57	24.0	2.4	11.26	8.42	1.41	2.22	4.44	9:35
10/3/18	21.43	21.31	23.77	25.57	8.26	8.92	7.77	7.84	21.5	1.5	24.94	53.34	3.28	2.34	4.04	9:53
9/26/18	21.12	21.06	25.58	25.75	6.46	6.09	7.61	7.58	24.1	1.5	14.87	14.2	2.42	1.90	4.89	9:44
9/19/18	23.64	23.25	24.69	26.13	6.80	5.76	7.62	7.49	24.4	1.25	10.64	11.22	2.99	5.05	4.93	10:52
9/14/18	22.53	22.55	25.98	26.75	5.30	4.41	7.44	7.40	21.8	1.8	13.29	9.71	3.06	8.58	3.61	10:06
9/5/18	26.22	24.79	25.94	26.77	10.02	8.21	8.01	7.61	27.2	1.5	25.75	22.9	2.83	5.85	4.26	10:55
8/29/18	25.62	25.31	26.09	26.31	7.62	7.51	7.99	7.83	30.3	1	78.54	53	5.42	4.15	3.59	9:35
8/23/18	23.89	23.90	26.37	26.53	6.91	6.50	7.82	7.76	20.9	1.5	40.95	30.5	2.71	3.63	5.46	9:45
8/15/18	23.70	23.39	26.23	26.46	7.12	6.10	7.73	7.52	24.1	1.25	82.24	5.87	3.52	4.86	3.10	9:45
8/8/18	25.20	22.76	25.57	26.61	10.29	4.07	8.28	7.28	26.5	0.9	150.84			2.21	5.22	10:58
8/2/18	24.13	23.26	25.45	26.16	6.01	4.01	7.59	7.32	27.4	1.75	14.80			5.52	3.28	9:27
8/2/18	23.49	23.16	26.04	26.25	3.80	3.09	7.39	7.29			33.35	15	2.48	5.34	3.31	<u> </u>
7/17/18	21.72	20.56	25.63	25.98	6.86	5.30	7.77	7.59	26.9	1	27.81	35.6	3.26	3.29	3.33	9:56
7/11/18	21.23	18.59	25.92	26.39	8.31	4.27	7.93	7.42	25.7	1.25	19.28	35.1	2.49	13.40	5.73	11:15
7/3/18	23.25	20.30	25.35	25.80	8.76	8.47	7.98	7.55	26.7	1.4	29.12	36.56		2.72	3.24	9:35
7/3/18		20.21	25.49	25.88	8.13	7.70	7.99	7.58	04.0	4	26.94	33.7	2.32	3.01	3.19	0.45
6/27/18	20.07	18.92	25.37	25.74	8.23	5.59	7.91	7.50	24.2	1	49.83	19.72	3.43	8.64	5.06	9:45
6/20/18	19.55	17.60	24.62	25.39	8.02	6.10	7.90	7.61	25.7	1.1	36.44	38.55		5.68	3.74	10:10
5/13/18	17.55	16.95	25.11	25.33	8.28	7.79	7.98	7.83	19.6	1.25	44.02	37.13		3.58	5.26	9:40
5/6/18 5/30/18	17.26	17.04	22.27	22.36	12.88		8.35	8.28	18.3	1.25	50.75	71.61		2.95	3.79	10:35
5/ KU/18	16.33 15.22	14.89 14.32	24.91 23.88	25.21 25.07	9.10 7.72	9.35	7.99	7.93	20.4	1.25	32.15	30.17 10.49		2.13 -1.49	5.00 3.57	10:35
		114 37	17.3 00	1/2/11/	1112	7.63	7.80	7.91	20.7	1	6.06	110.49	1-0 89	1-144	1221	11:20
5/23/18	15.22	14.02	20.00	20.07									0.00	1.40	0.01	
5/23/18	s indicate n			20.07										1.40	0.01	

	LITION TO			CSH⊢	Water	-Moni	torina F	Progra	m 2018	8						
HEM	PSTEAD HA	RBOR														
Date	Water Te	/	Salinity		DO (p	<u> </u>	pH (ppi	1	Air Temp				Turbidit			
	Surface*	Bottom**	Surface	Bottom	Surface	Bottom	Surface	Bottom	(°C)	(m)	Surface	Bottom	Surface	Bottom	(Total)	(AM)
			e Treatmen		utfall											
10/31/18	13.16	12.96	24.91	25.37	8.02	8.03	7.76	7.80	13.6	1.25	8.44	9.11	5.15	6.03	1.89	11:05
10/24/18 10/24/18	13.95 14.8	14.08 14.1	19.58 18.01	22.06 24.17	9.26 8.65	8.40 7.73	7.70 7.71	7.73 7.82	8.7	2	11.16	11.35	3.71	2.51	3.30 3.6	8:50 8:55
10/17/18	15.51	17.30	16.68	22.13	8.61	6.28	7.62	7.50	12.6	1.2	6.60	9.38	3.92	7.90	2.88	9:47
		21.00	23.97	25.16	6.35	5.67	7.50	7.52	23.6	1.7	10.01	9.61	3.57	3.37	3.30	9:55
		21.31 21.18	21.8 21.01	25.34 25.74	8.61 6.46	7.50 5.40	7.74 7.53	7.57 7.47	21.0 24.3	1.25 1.25	46.16 12.78	31.53 10.38	4.33 3.56	7.71 4.02	2.66 3.82	10:21 10:18
		23.32	24.37	25.74	6.77	5.64	7.62	7.47	24.3	1.25	37.53	15.19		4.02	3.32	11:22
09/14/18	22.55	22.56	25.51	26.44	3.55	3.13	7.33	7.29	22.6	1.5	19.28	10.14	8.78	8.99	2.34	10:50
		25.89	25.22	26.34	7.87	8.39	7.86	7.88	29.0	1.25	41.74	30.6	6.43	5.29	2.15	11:25
8/29/18 8/23/18		25.49 24.09	23.43 24.36	25.98 26.59	7.44 6.88	6.05 5.31	7.91 7.74	7.59 7.60	31.0 20.9	1.25 1.25	42.70 46.89	38.4 25.5	6.71 2.96	6.24 2.79	2.76 4.24	10:15 10:11
		23.78	24.65	26.00	6.57	5.65	7.65	7.35	24.3	1.25	85.56	31.1		5.0	2.02	10:11
		24.48	25.81	26.06	7.57	6.44	7.85	7.47	29.4	1	125.80	34.4	8.02	3.10	2.30	11:25
8/2/18		24.02	20.63	25.71	10.06	7.51	7.86	7.52	26.7	1	68.57	17.8	4.8	7.06	2.23	10:10
		21.67 20.65	19.18 25.09	25.64 26.07	7.06 6.47	6.27 6.36	7.62 7.68	7.56 7.70	28.8 26.6	1 0.75	26.83 24.93	33.2 28.6	6.08 7.04	7.76 12.83	1.96 4.35	10:30 11:35
		21.16	25.03	25.72	8.66	7.05	7.83	7.43	27.9	1.1	64.28	17		4.99	2.23	10:15
6/27/18	20.75	20.11	21.62	25.20	9.25	8.08	7.76	7.78	23.9	1.1	48.43	42.3	3.77	5.12	4.05	10:20
6/20/18 6/13/18	19.09 18.60	19.24 17.97	24.12 24.05	24.83 24.84	6.20 8.15	6.15 8.51	7.64 8.03	7.67 7.96	23.3 20.4	0.75	33.59 62.38	38.1 60.1	7.96 4.01	4.45 4.90	2.22 4.09	11:08 10:05
6/6/18	18.60	17.04	24.05	24.84	14.17	12.92	8.55	7.96 8.15	20.4 19.8	1	62.38 47.50	62.2	3.18	4.90	4.09 2.47	11:15
5/30/18	16.79	15.85	21.66	24.85	8.69	8.78	7.77	7.84	24.2	1.25	26.28	32.2	2.86	11.42	3.94	11:00
5/23/18	14.70	14.52	24.73	24.85	7.01	6.72	7.74	7.72		N/A	9.03	7.7	0.53	2.41	1.51	11:50
Dumle lines	. in dia ata n				Dhue											
Purple lines			readings we			hiah but	reflect stat	on condi	tions							
CSHH #13			ill Pond W	eir												
10/24/18	14.43	14.31	18.83	21.93	8.24	6.35	7.44	7.52	9.4	1	11.10	8.13	6.77	14.72	2.92	9:20
10/24/18 10/17/18	14.20 14.52	14.50 17.24	17.22 12.46	23.64 18.16	6.20 8.19	5.17 6.10	7.62 7.34	7.57 7.18	12.8	1	4.78	8.17	3.15	10.90	2.00 1.30	9:25 10:16
		20.95	23.16	24.82	4.00	3.25	7.26	7.26	23.7	1.5	10.01	5.67		6.93	2.31	10:10
		21.12	23.22	24.01	6.03	5.96	7.34	7.34	21.50	1.0 botto		22.51	6.96	6.16	1.00	10:41
		21.28	23.96	25.66	4.54	3.74	7.39	7.51		0.75	8.44	8.45		9.79	2.50	10:41
9/19/18 9/14/18		23.51 22.53	24.62 25.54	25.54 26.08	5.08 4.02	4.09 2.90	7.39 7.23	7.33 7.23	25.60 22.20	1.25 0.8	24.10 10.51	11.09 9.1		5.53 4.76	1.70 1.23	11:38 11:18
9/5/18		25.24	24.22	26.09	9.55	6.96	7.89	7.37	29.60	1	107.24	21.3	4.34	7.76	2.38	11:50
8/23/18	23.73	24.32	22.76	26.33	5.05	3.09	7.39	7.31	22.40	1.25	37.60	17.4	4.40	5.94	3.32	10:35
		23.41	21.98	25.66	5.48		7.28	7.12	25.40	1.25 Bottom		16.6		9.89	1.38	10:35
		24.30 23.70	23.81 19.20	26.12 24.88	6.36 5.16	4.41 4.12	7.50 7.29	7.41 7.16	30.5 27.5	1.25 0.85	40.03 29.03	35.2 12.3		3.08 7.67	3.26 1.37	11:40 10:30
		21.97	19.77	25.11	4.48	3.62	7.24	7.19		0.5	16.98	12.2	19.56	13.11	1.14	10:55
7/11/18	No survey	at this st														
		22.42	22.13	22.30	7.59	7.50	7.63	7.63	32.0	0.6	59.09	55.4	9.65	13.33	0.86	10:43
6/27/18 6/20/18		20.25 19.09	23.48 23.90	24.79 24.43		6.60 5.03	7.75 7.57	7.55 7.42	23.8 26.00	1 0.85	87.29 41.12	43.9 32.47		5.05 8.37	2.52 1.05	10:40 11:30
6/13/18		18.81	23.94		9.03	7.60	7.90	7.84	21.4	1	83.53	69.36		5.62	2.66	10:30
6/6/18	No vertica	l profile -	picked up r													
5/30/18		15.59	23.21	24.38	6.33	5.68	7.48	7.57	23.5	1	24.03	25.19	5.38	6.29	2.47	11:20
5/23/18	No survey	on this d	ale.													
Purple lines	s indicate r	eplicate s	urvey using	y YSI Pro	Plus.											
			readings we			high but	reflect stat	on condi	tions.							
CSHH #14	- 50 vdo fr	om Pow	arboues D	ain												
		13.07	22.02	22.03	9.30	8.87	7.80	7.79	10.4	1.25	13.06	13.66	4.04	3.50	2.43	10:25
9/19/2018		23.09	25.26	25.59	5.33	4.75	7.33	7.34	23.2	1.25	11.35	13.73		3.60	2.21	8:53
9/5/2018	25.86	25.51	26.17	26.31	6.88	6.49	7.62	7.53	27.0	1	91.62	46.2	8.20	3.79	2.23	9:00
		23.40	26.17	26.38	4.95	3.05	7.32	7.22	26.9	1	68.08		3.07	1.99	2.72	9:16
		19.87 20.23	26.02 25.91	26.10 26.06	4.99 4.99	5.04 5.24	7.49 7.53	7.46 7.49	22.5	1	33.62 31.04	38.57 36.75		7.75 7.40	2.01 2.04	8:15 8:20
		17.10	25.05	25.15	7.75	7.12	7.81	7.74	20.5	n/a	45.16	42.41		3.25	2.55	11:25
5/23/2018		14.66	24.23	24.40	6.96	6.36	7.65	7.65	20.4	1.25	4.46	6.92	0.21	-0.02	1.80	9:30
Croop line -	indicate	nlinct-														
Green lines	s indicate re	eplicate s	urveys.							l						

9/6/18 25.68 25.43 28.20 28.20 7.80 7.66 27.6 1.25 30.60 28.78 33.23 8/0/18 23.94 22.97 26.16 28.67 28.24 7.00 7.80 7.75 2.20 1.25 30.60 28.78 3.52 3.30 8/0/18 23.94 22.97 26.16 7.46 7.43 7.73 2.41 1 25.85 26.16 7.46 7.76 7.78 21.00 n/a 43.26 41.06 4.52 3.25 CSHH #4 - Bar Beach Spit -					
Surface Bottom Surface Bottom Surface Bottom Gran Or (°C) (m) Surface Bottom S2HH #15 - 50 yds from Scuedder's Pond Outfall, North of Tappen Pool 7 7 7.37 7.38 1.3 1.12 1.3.3 1.51 1.23 3.02 9/19/18 25.68 25.64 2.56 0.27 7.00 7.37 23.8 1.25 50.18 4.943 3.79 4.58 9/23/18 23.66 23.82 2.0.07 2.62.4 7.00 7.73 7.76 1.25 50.18 4.943 3.79 4.58 9/23/18 23.94 2.29 2.85 2.61.6 7.46 7.70 7.73 7.71 2.4.1 1 2.595 4.60.0 5.06 5.30 9/31/316 17.00 17.35 2.49 1.53 8.07 7.73 7.79 9.6 1.7 1.005 1.4.17 3.75 2.00 10/02/418 12.30 2.53.1 5.53					
Surface Bottom Surface Bottom Surface Bottom Gran Or (°C) (m) Surface Bottom S2HH #15 - 50 yds from Scuedder's Pond Outfall, North of Tappen Pool 7 7 7.37 7.38 1.3 1.12 1.3.3 1.51 1.23 3.02 9/19/18 25.68 25.64 2.56 0.27 7.00 7.37 23.8 1.25 50.18 4.943 3.79 4.58 9/23/18 23.66 23.82 2.0.07 2.62.4 7.00 7.73 7.76 1.25 50.18 4.943 3.79 4.58 9/23/18 23.94 2.29 2.85 2.61.6 7.46 7.70 7.73 7.71 2.4.1 1 2.595 4.60.0 5.06 5.30 9/31/316 17.00 17.35 2.49 1.53 8.07 7.73 7.79 9.6 1.7 1.005 1.4.17 3.75 2.00 10/02/418 12.30 2.53.1 5.53	Donth(m)	th (m)	Tim		
1010110 21.07 21.03 25.46 25.46 6.84 7.66 7.66 24.3 1.35 1.37 1.37 3.78 3.02 9/918 25.06 25.44 25.64 8.26 0.00 7.40 7.77 23.8 1.25 1.48 8.224 4.14 5.65 9/918 23.64 23.62 0.00 7.84 7.76 22.0 1.25 30.69 2.87 3.58 3.03 9/918 23.64 23.64 2.66 8.66 7.66 7.77 7.75 2.0 1.25 30.66 5.30 9/1119 21.10 2.68 2.6.16 7.46 7.77 7.73 2.1.1 1.25 5.46 6.60 5.06 5.30 9/1119 21.10 2.10 2.10 2.10 7.77 7.79 9.6 1.7 1.00.5 1.4.17 3.72 2.64 10/2418 12.06 2.10 2.5.12 5.67 4.33 5.67 7.3			Tin (AN		
101/01/18 21.07 21.03 25.46 25.40 25.64 6.94 6.84 7.66 7.56 24.3 1.3 1.25 1.48 22.44 1.41 5.65 95/18 25.68 25.43 26.20 72.6,24 5.8 5.8 2.00 7.00 7.66 27.6 1.25 5.018 49.43 3.79 4.58 95/18 23.68 23.82 26.07 26.24 7.00 6.72 7.78 7.75 22.0 1.25 30.69 2.878 3.52 3.03 96/18 23.94 22.97 26.15 26.54 5.96 3.10 7.43 7.19 25.4 1 25.96 46.05 5.06 5.30 61/318 23.94 22.97 26.15 26.54 5.96 1.74 6.709 7.80 7.73 24.1 1 25.95 46.06 15.06 5.30 61/318 17.00 17.35 24.92 25.08 8.03 8.07 7.85 7.87 21.00 n/a 43.26 41.06 4.52 3.25 05/14 44 - 44 25.65 26.16 1.74 6.709 7.80 7.73 24.1 1 25.95 46.06 15.06 5.30 61/318 17.60 17.35 24.92 25.08 8.03 8.07 7.85 7.87 21.00 n/a 43.26 41.06 4.52 3.25 05/14 44 - 44 - 44 - 44 - 44 - 44 - 44 - 4					
9/9/18 23.00 23.11 25.40 25.64 5.89 5.00 7.40 7.37 23.8 1.25 50.14 82.44 1.4 5.65 9/7/18 25.86 25.43 22.07 22.64 1.00 6.72 7.76 7.75 22.0 1.25 50.14 44.43 3.32 2.41.68 3.77 7.75 7.79 9.6 1.7 10.00 14.17 3.75 2.04 10/24/18 12.01 13.32 21.90 22.12 21.66 1.56 7.73 7.70 Couldn't complete because of visind - went to 8m dep 1.00.01 1.17 3.75 2.43 2 5.60 1.20.4 2.39 2.70 10/10/18 21.06 25.61	1.29 1		10:4		
98/16 26.68 25.43 26.20 2.26 8.20 7.90 7.66 27.6 1.25 30.60 28.78 23.30 80/18 23.804 22.97 26.15 26.60 7.64 7.00 7.73 7.75 2.20 1.25 30.60 28.78 3.52 2.3.03 80/18 23.84 22.97 26.15 26.66 7.46 7.43 7.73 2.4.1 1 25.86 26.16 7.46 7.75 7.79 2.10 n/a 43.26 41.06 4.52 3.25 CSHH#4 - Bar Beach Spit 1024/16 1.0.1 13.23 22.12 9.15 8.77 7.75 7.79 9.6 1.7 10.05 14.17 3.75 2.04 1024/16 12.01 25.40 25.51 6.15 5.44 7.55 7.85 2.4.3 2 9.90 10.04 2.39 2.74 1010112 2.0.2 2.64 6.39 1.8 7.52 7.81 7.			9:25		
Bill B 23.94 22.97 26.15 26.64 5.96 3.10 7.43 7.19 25.4 1 35.22 21.39 3.44 2.24 6/13/16 17.60 17.35 24.92 25.08 8.03 8.07 7.85 7.87 21.00 n/a 43.26 41.06 4.52 3.25 CSHH #A Bar Boach Spit 21.00 23.21 9.15 8.67 7.79 7.90 couldn't complete because of wind - went to 8m dep 10/24/16 13.01 13.23 21.90 22.15 8.15 6.84 7.55 7.38 24.0 1.26 9.47 1.34 4.59 2.04 2.38 2.44 2.94 1.33.78 2.24.0 1.26 9.47 1.34 4.59 2.84 2.94 1.25 9.47 1.3 3.72 2.25 1 1.22.9 9.47 1.4 4.59 4.40 94/18 2.00 2.54 4.33 2.57 4.57 5.48 2.57 7.56			9:30		
7/11/18 21.11 20.29 28.85 26.16 7.46 7.09 7.85 7.87 21.00 n/a 43.26 41.00 45.20 325 6/13/14 17.60 17.35 24.92 25.08 8.03 8.07 7.85 7.87 21.00 n/a 43.26 41.06 45.23 325 01/24/18 13.01 13.23 21.90 22.12 9.15 8.77 7.75 7.79 9.6 1.77 10.05 14.17 3.75 2.04 10.24/18 12.9 12.05 12.04 2.59 12.04 2.39 2.70 13.4 4.59 4.46 9/19/18 2.50.6 24.70 2.51 2.65.7 4.33 2.87 7.31 7.44 1 3.378 2.42 3.88 2.60 8.39 4.18 7.56 7.52 2.71 1 3.64.6 4.55 6.03 9/118 20.09 2.342 26.28 26.64 6.13 5.87 7.56 7.52 2.71 1 3.66 4.55 6.03 9.75 8.38 9.77 <	2.20 1	1	11:0		
6/13/18 17.60 17.35 24.92 25.08 8.03 8.07 7.85 7.87 21.00 n/a 43.26 41.06 4.52 3.25 CSHH #4 - Bar Beach Spit -			9:40		
CSHH 44 Bar Beach Spit C A C A C <thc< th=""> C <thc< th=""> C</thc<></thc<>			9:50		
10124/18 13.01 13.23 21.90 22.12 9.15 8.77 7.75 7.79 9.66 1.7 10.05 14.17 3.75 2.04 10124178 12.9 13.3 23.82 24.18 8.77 8.67 7.79 7.90 couldn't complete because of wind - went to 8m dep 9/1918 23.15 23.15 25.61 6.15 5.84 7.55 24.3 2 5.90 12.04 2.99 2.70 9/1918 25.06 24.70 26.51 26.57 4.43 2.87 7.38 24.0 1.25 9.47 1.43 3.76 24.2 3.88 2.69 8/8/18 24.09 23.42 26.82 26.40 6.13 5.87 7.52 22.7 1 36.46 4.55 6.03 7/1118 20.91 20.34 25.88 26.40 6.13 5.87 7.56 7.52 22.7 1 36.46 4.56 6.03 9/118 20.60 21.59 21.71 9.13 8.38 7.72 7.68 10.7 1 6.	1.99 1	1	11:0		
10/24/18 12.9 13.3 23.82 24.18 8.77 7.79 7.90 coundrt complete because of wind - went to 8m dep 10/10/18 21.06 25.40 25.51 6.15 5.84 7.55 24.3 2 5.00 12.04 2.39 2.70 9/9/18 23.15 25.63 25.75 6.33 5.04 7.35 7.34 2.42 1.43 3.87 2.4.2 3.88 2.40 9/9/18 20.04 26.22 26.40 6.39 4.18 7.52 7.25 22.7 1 36.46 45.6 4.55 6.03 Purple lines indicate replicate survey using YSI Pro Plus. Image: the realings were unusually low or high but reflect station conditions. Image: the realing were unusually low or high but reflect station conditions. Image: the realing were unusually low or high but reflect station conditions. Image: the realing were unusually low or high but reflect station conditions. Image: the realing were unusually low or high but reflect station conditions. Image: the realing were unusually low or high but reflect station conditions. Image: the realing were unusually low or high but reflect station conditions. Image: the realing were unusually low or high but reflect station conditions. Image: the realing were unusually low or high but refle					
101/10/18 21.00 25.40 25.51 6.15 5.84 7.55 7.55 24.3 2 5.90 12.04 2.39 2.70 9/19/18 25.06 24.70 26.51 26.57 4.43 2.87 7.31 7.24 27.4 1 33.78 24.2 3.88 2.69 8/6/18 24.09 23.42 26.22 26.40 6.39 4.18 7.52 7.51 1 1.22.92 3.57 4.67 2.46 9/19/18 23.42 25.82 26.04 6.13 5.87 7.56 7.52 22.7 1 36.46 4.56 4.55 6.03 Purple lines indicate replicate survey using YSI Pro Plus. 30.47 7.21 7.21 2.3 1.5 1.55 5.68 3.61 2.67 <	3.07 9	9	9:55		
9/19/18 23.15 25.63 25.75 6.33 5.04 7.36 7.36 24.0 1.25 9.47 13.4 4.59 4.46 9/5/18 25.06 24.70 26.51 26.57 4.43 2.87 7.31 7.24 27.4 1 33.78 24.2 3.88 2.69 9/6/18 24.09 23.42 26.22 26.40 6.39 4.18 7.56 7.52 22.1 1 11 12.29 35.7 4.67 2.46 7/1118 20.91 20.34 25.88 26.04 6.13 5.87 7.56 7.52 22.7 1 36.46 4.56 4.56 6.03 Purple lines indicate that the readings were unusually low or high but reflect station conditions. 26.7 5.63 8.61 2.67 7.56 3.8 9.47 13.4 2.80 1.8.7 7.48 24.01 1.6 5.05 5.68 3.61 2.67 7.48 24.01 2.6 2.10 2.7 7.43 9/5/18 <			10:1		
9/s/18 25.06 24.70 26.51 26.57 4.43 2.87 7.31 7.24 27.4 1 33.78 24.2 3.88 2.69 8/8/18 24.09 23.42 26.22 26.40 6.39 4.18 7.52 7.52 26.1 1 122.92 35.7 4.67 2.46 V111/18 20.34 25.88 26.04 6.13 5.87 7.56 7.52 22.7 1 36.46 4.5.6 4.5.6 6.03 Purple lines indicate replicate survey using YSI Pro Plus. <	3.52 1	1	10:5		
68/18 24.09 23.42 26.22 26.40 6.39 4.18 7.52 7.25 26.1 1 122.92 35.7 4.67 2.467 7/11/18 20.91 20.34 25.88 26.04 6.13 5.87 7.56 7.52 22.7 1 36.46 45.6 4.55 6.03 Purple lines indicate replicate survey using YSI Pro Plus. Red numbers indicate that the readings were unusually low or high but reflect station conditions. Image: Conditions of the conditions. Image: Condition of the conditions. Imag			8:58		
7/11/18 20.91 20.34 25.88 26.04 6.13 5.87 7.56 7.52 22.7 1 36.46 45.6 4.55 6.03 Purple lines indicate replicate survey using YSI Pro Plus. Image: Control of the plant of			9:10		
Purple lines indicate replicate survey using YSI Pro Plus. Red numbers indicate the readings were unusually low or high but reflect station conditions. Not reflect station conditions. CSHH #5 - Mott's Cove 1 1 6.95 7.75 6.38 9.47 10/24/18 12.64 12.69 21.59 21.71 9.13 8.38 7.72 7.68 10.7 1 6.95 7.75 6.38 9.47 9/19/18 23.06 23.30 25.28 25.55 3.95 3.92 7.21 7.21 23.31 1.5 15.06 5.68 3.61 2.47 7.43 9/5/18 23.37 23.96 25.86 26.02 6.23 4.94 7.54 7.47 21.8 2.80ttm 9.71 8.56 1.38 1.08 9/6/18 23.37 23.44 25.92 26.27 4.20 3.04 7.19 7.15 7.48 2.80 1.3 1.60 1.99 5.33 9/11/18 12.60 12.17 21.72 8.32 8.27 7.			9:25		
Red numbers indicate that the readings were unusually low or high but reflect station conditions. Image: State of the state	2.09 8	8	8:28		
Red numbers indicate that the readings were unusually low or high but reflect station conditions. Image: State of the state					
CSHH #5 - Mot's Cove C C C CSHH #5 - Mot's Cove C C C C CSHH #5 - Mot's Cove C <th c<<="" colspan="2" td=""><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td>				
10/24/18 12.64 12.69 21.59 21.71 9.13 8.38 7.72 7.68 10.7 1 6.95 7.75 6.38 9.47 9/19/18 23.06 25.28 25.08 25.87 26.06 4.77 3.57 7.22 7.14 23.3 1.5 15.05 5.68 3.61 2.67 9/5/18 23.97 23.96 25.86 26.02 6.23 4.94 7.54 7.47 21.8 2.80tom 9.71 8.56 1.38 1.06 8/8/18 23.72 23.44 25.92 25.85 5.88 5.86 7.45 7.46 7.48 24.80 1 3.61 28.65 3.15 5.04 5/23/18 14.60 14.47 24.27 24.47 6.79 6.55 7.61 7.66 19.4 1.25 4.81 9.03 -1.1 -0.14 CSHH#6 East of Former Incinerator Site 7.44 24.80 1 14.43 4.84 5.67 10/24/18 12.67 12.66 21.71 21.72 8.32 <t< td=""><td></td><td></td><td></td></t<>					
9/19/18 23.06 23.10 25.28 25.55 3.95 3.92 7.21 7.21 23.3 1.5 15.05 5.68 3.61 2.67 9/5/18 25.32 25.08 25.87 26.06 4.77 3.57 7.22 7.14 26.3 1.5 7.018 23.10 4.27 7.43 8/23/18 23.97 23.96 25.86 26.02 6.23 4.94 7.54 7.47 21.8 2 Bottom 7.11 8.56 1.38 1.06 8/8/18 23.72 23.44 25.92 26.27 4.20 3.04 7.19 7.15 27.5 n/a 26.18 4.95 1.99 5.33 7/11/18 14.60 14.47 24.27 24.47 6.79 6.55 7.61 7.66 19.4 1.25 A.81 9.03 -1.1 -0.14 0/2/3/18 14.60 14.47 24.27 24.47 6.79 6.55 7.62 7.68 10.1 2 5.66 11.44 3.48 5.67 10/2/4/18 12.67 12.66					
9/5/18 25.32 25.08 25.87 26.06 4.77 3.57 7.22 7.14 26.3 1.5 70.18 23.10 4.27 7.43 8/23/18 23.97 23.96 25.86 26.02 6.23 4.94 7.54 7.47 21.8 2 Bottom 9.71 8.56 1.38 1.06 8/8/18 23.72 23.44 25.92 26.27 4.20 3.04 7.19 7.15 27.5 n/a 26.18 4.95 1.99 5.33 7/11/18 21.02 20.78 25.53 25.85 5.88 5.58 7.46 7.46 1.40 1.41 31.67 28.6 5.31 5.04 5/23/18 14.60 14.47 24.27 24.47 6.79 6.55 7.61 7.66 19.4 1.25 4.81 9.03 -1.1 -0.14 CSHH #6 - East of Former Incinerator Site 0 1 2 5.66 11.44 3.48 5.67 10/24/18 12.67 12.66 25.70 4.50 3.76 7.33 7.32 7.33<			10:3		
8/23/18 23.97 23.96 25.86 26.02 6.23 4.94 7.54 7.47 21.8 2 Bottom 9.71 8.56 1.38 1.06 8/8/18 23.72 23.44 25.92 26.27 4.20 3.04 7.15 7.15 27.5 n/a 26.18 4.95 1.99 5.33 5/23/18 14.60 14.47 24.27 24.47 6.79 6.55 7.61 7.66 19.4 1.25 4.81 9.03 -1.1 -0.14 CSHH #6 - East of Former Incinerator Site Image: Site Site Site Site Site Site Site Site			8:38		
8/8/18 23.72 23.44 25.92 26.27 4.20 3.04 7.19 7.15 27.5 n/a 26.18 4.95 1.99 5.33 7/11/18 21.02 20.78 25.53 25.85 5.88 5.58 7.45 7.46 24.80 1 31.67 28.6 5.31 5.04 5/23/18 14.60 14.47 24.27 24.47 6.79 6.55 7.61 7.66 19.4 1.25 4.81 9.03 -1.1 -0.14 CSHH #6 - East of Former Incinerator Site 19.4 7.44 24.9 1.75 11.44 3.48 5.67 10/24/18 12.66 21.71 21.72 8.32 8.27 7.69 7.68 10.1 2 5.66 11.44 3.48 5.67 8/8/18 24.41 24.12 25.89 26.02 4.25 2.55 7.22 7.11 25.5 n/a 36.47 10.7 3.84 6.18 7/11/18 21.63 21.29 24.60 6.68 6.37 7.67 7.		-	8:47		
7/11/18 21.02 20.78 25.53 25.85 5.88 5.58 7.45 7.46 24.80 1 31.67 28.6 5.31 5.04 5/23/18 14.60 14.47 24.27 24.47 6.79 6.55 7.61 7.66 19.4 1.25 4.81 9.03 -1.1 -0.14 CSHH #6 - East of Former Incinerator Site 6.55 7.61 7.66 19.4 1.25 4.81 9.03 -1.1 -0.14 CSHH #6 - East of Former Incinerator Site 6.65 7.61 7.68 10.1 2 5.66 11.44 3.48 5.67 10/1018 21.26 21.01 24.412 25.89 26.02 4.25 2.55 7.22 7.11 25.5 n/a 36.47 10.7 3.84 6.18 1.02 7.71 Site of oil dock <th co<="" td=""><td></td><td></td><td>11:5</td></th>	<td></td> <td></td> <td>11:5</td>			11:5	
5/23/18 14.60 14.47 24.27 24.47 6.79 6.55 7.61 7.66 19.4 1.25 4.81 9.03 -1.1 -0.14 CSHH #6 - East of Former Incinerator Site Image: Construct on the construct			9:03		
CSHH #6 - East of Former Incinerator Site n			8:44		
10/24/18 12.67 12.66 21.71 21.72 8.32 8.27 7.69 7.68 10.1 2 5.66 11.44 3.48 5.67 10/10/18 21.26 21.01 24.95 25.05 5.43 5.14 7.45 7.44 24.9 1.75 11.48 5.87 4.01 5.67 8/23/18 24.16 24.13 25.76 25.70 4.50 3.76 7.33 7.33 22.8 1.75 14.43 14.3 3.24 7.20 8/8/18 24.41 24.12 25.89 26.02 4.25 2.55 7.22 7.11 25.5 n/a 36.47 10.7 3.84 6.18 7/11/18 21.62 25.65 5.47 5.37 7.32 7.36 24.0 1 21.55 15.6 4.29 3.44 05/23/18 15.11 14.51 24.29 24.60 6.68 6.37 7.67 10.7 1 3.43 3.79 8.26 6.29 10/24/18 11.98 12.04 21.05 21.15 8.83	1.66 9	9	9:10		
10/24/18 12.67 12.66 21.71 21.72 8.32 8.27 7.69 7.68 10.1 2 5.66 11.44 3.48 5.67 10/10/18 21.26 21.01 24.95 25.05 5.43 5.14 7.45 7.44 24.9 1.75 11.48 5.87 4.01 5.67 8/23/18 24.16 24.13 25.76 25.70 4.50 3.76 7.33 7.33 22.8 1.75 14.43 14.3 3.24 7.20 8/8/18 24.41 24.12 25.89 26.02 4.25 2.55 7.22 7.11 25.55 16.43 1.29 3.44 6.18 7/11/18 21.65 22.65 25.72 5.47 5.37 7.32 7.36 24.0 1 21.55 16.4 2.93 3.44 05/23/18 15.11 14.51 24.29 24.60 6.68 6.37 7.67 10.7 1 3.43 3.79 8.26 6.29 10/24/18 11.98 12.04 21.05 21.15 8.83					
10/10/18 21.26 21.01 24.95 25.05 5.43 5.14 7.45 7.44 24.9 1.75 11.48 5.87 4.01 5.67 8/23/18 24.16 24.13 25.76 25.70 4.50 3.76 7.33 7.33 22.8 1.75 14.43 14.3 3.24 7.20 8/8/18 24.41 24.12 25.89 26.02 4.25 2.55 7.22 7.11 25.5 n/a 36.47 10.7 3.84 6.18 7/11/18 21.63 21.29 25.65 25.72 5.47 5.37 7.32 7.36 24.0 1 21.55 16.4 4.29 3.44 05/23/18 15.11 14.51 24.29 24.60 6.68 6.37 7.63 7.69 18.9 1.25 6.15 8.18 1.02 7.41 05/23/18 15.98 12.04 21.05 21.15 8.83 7.97 7.62 7.57 10.7 1 3.43 3.79 8.26 6.29 10/10/18 21.11 21.09	2.70 1	1	10:5		
8/23/18 24.16 24.13 25.76 25.70 4.50 3.76 7.33 7.33 22.8 1.75 14.43 14.3 3.24 7.20 8/8/18 24.41 24.12 25.89 26.02 4.25 2.55 7.22 7.11 25.5 n/a 36.47 10.7 3.84 6.18 7/11/18 21.63 21.29 25.65 25.72 5.47 5.37 7.32 7.36 24.0 1 21.55 15.6 4.29 3.44 05/23/18 15.11 14.51 24.29 24.60 6.68 6.37 7.63 7.69 18.9 1.25 6.15 8.18 1.02 7.71 CSHH #7 - West of Bryant Landing (formerly site of oil dock) 3.43 3.79 8.26 6.29 10/10/18 21.11 21.09 24.18 24.80 5.29 4.65 7.36 7.36 24.8 0.75 7.51 8.22 8.38 5.57 9/19/18 22.89 23.34 23.62 24.80			11:1		
8/8/18 24.41 24.12 25.89 26.02 4.25 2.55 7.22 7.11 25.5 n/a 36.47 10.7 3.84 6.18 7/11/18 21.63 21.29 25.65 25.72 5.47 5.37 7.32 7.36 24.0 1 21.55 15.6 4.29 3.44 05/23/18 15.11 14.51 24.29 24.60 6.68 6.37 7.63 7.69 18.9 1.25 6.15 8.18 1.02 7.71 CSHH #7 - West of Bryant Lawding (formerly site of oil dock) 10/24/18 11.98 12.04 21.05 21.15 8.83 7.97 7.62 7.57 10.7 1 3.43 3.79 8.26 6.29 10/10/18 21.11 21.09 24.18 24.80 5.29 4.65 7.36 7.36 24.8 0.75 7.51 8.22 8.38 5.57 9/19/18 22.83 23.32 23.40 24.82 6.41 5.49 7.01 6.99 12.56 6.37 7.59 4.53 8/23/18			11:4		
7/11/18 21.63 21.29 25.65 25.72 5.47 5.37 7.32 7.36 24.0 1 21.55 15.6 4.29 3.44 05/23/18 15.11 14.51 24.29 24.60 6.68 6.37 7.63 7.69 18.9 1.25 6.15 8.18 1.02 7.71 CSHH #7 - West of Bryant Landing (formerly site of oil dock) Image: colspan="4">Image: colspan= 44.40 <td cols<="" td=""><td></td><td></td><td>8:48</td></td>	<td></td> <td></td> <td>8:48</td>			8:48	
CSHH #7 - West of Bryant Landing (formerly site of oil dock) Image: constraint of the state of constraint of constrant of constraint of constraint of constraint of constrai	2.44 9	9	9:05		
10/24/18 11.98 12.04 21.05 21.15 8.83 7.97 7.62 7.57 10.7 1 3.43 3.79 8.26 6.29 10/10/18 21.11 21.09 24.18 24.80 5.29 4.65 7.36 7.36 24.8 0.75 7.51 8.22 8.38 5.57 9/19/18 22.89 23.34 23.62 24.80 5.46 2.98 7.05 7.00 22.3 1 9.47 3.82 6.48 3.76 9/19/18 22.83 23.32 23.40 24.82 6.41 5.49 7.01 6.99 12.56 6.37 7.59 4.53 8/23/18 23.65 23.77 24.52 24.79 5.38 3.69 7.34 7.26 22.3 1 15.17 16.4 6.54 12.22 8/8/18 24.18 24.42 24.44 25.66 2.60 1.90 7.00 7.06 26.6 1.5 7.78 9.69 6.89 2.23 7/11/18 21.79 21.75 25.47 25.51 <t< td=""><td>3.07 8</td><td>8</td><td>8:55</td></t<>	3.07 8	8	8:55		
10/24/18 11.98 12.04 21.05 21.15 8.83 7.97 7.62 7.57 10.7 1 3.43 3.79 8.26 6.29 10/10/18 21.11 21.09 24.18 24.80 5.29 4.65 7.36 7.36 24.8 0.75 7.51 8.22 8.38 5.57 9/19/18 22.89 23.34 23.62 24.80 5.46 2.98 7.05 7.00 22.3 1 9.47 3.82 6.48 3.76 9/19/18 22.83 23.32 23.40 24.82 6.41 5.49 7.01 6.99 12.56 6.37 7.59 4.53 8/23/18 23.65 23.77 24.52 24.79 5.38 3.69 7.34 7.26 22.3 1 15.17 16.4 6.54 12.22 8/8/18 24.18 24.42 24.44 25.66 2.60 1.90 7.00 7.06 26.6 1.5 7.78 9.69 6.89 2.23 7/11/18 21.79 21.75 25.47 25.51 <t< td=""><td></td><td></td><td></td></t<>					
10/10/18 21.11 21.09 24.18 24.80 5.29 4.65 7.36 7.36 24.8 0.75 7.51 8.22 8.38 5.57 9/19/18 22.89 23.34 23.62 24.80 5.46 2.98 7.05 7.00 22.3 1 9.47 3.82 6.48 3.76 9/19/18 22.83 23.32 23.40 24.82 6.41 5.49 7.01 6.99 12.56 6.37 7.59 4.53 8/23/18 23.65 23.77 24.52 24.79 5.38 3.69 7.34 7.26 22.3 1 15.17 16.4 6.54 12.22 8/8/18 24.18 24.42 24.44 25.86 2.60 1.90 7.00 7.06 26.6 1.5 7.78 9.69 6.89 2.23 7/11/18 21.79 21.75 25.47 25.51 4.46 4.18 7.14 7.15 24.7 1.25 25.18 25.2 4.38 10.62 6/27/18 20.72 20.69 24.68 24.78			11.0		
9/19/18 22.89 23.34 23.62 24.80 5.46 2.98 7.05 7.00 22.3 1 9.47 3.82 6.48 3.76 9/19/18 22.83 23.32 23.40 24.82 6.41 5.49 7.01 6.99 12.56 6.37 7.59 4.53 8/23/18 23.65 23.77 24.52 24.79 5.38 3.69 7.34 7.26 22.3 1 15.17 16.4 6.54 12.22 8/8/18 24.18 24.42 24.44 25.86 2.60 1.90 7.00 7.06 26.6 1.5 7.78 9.69 6.89 2.23 7/11/18 21.79 21.75 25.47 25.51 4.46 4.18 7.14 7.15 24.7 1.25 25.18 25.2 4.38 10.62 6/27/18 20.72 20.69 24.68 24.78 6.51 5.47 7.37 7.31 23.8 1.75Bottom 6.45 6.14 1.38 1.83 5/23/18 15.30 15.06 24.02 24.37 5.51 <td></td> <td></td> <td>11:0</td>			11:0		
9/19/18 22.83 23.32 23.40 24.82 6.41 5.49 7.01 6.99 12.56 6.37 7.59 4.53 8/23/18 23.65 23.77 24.52 24.79 5.38 3.69 7.34 7.26 22.3 1 15.17 16.4 6.54 12.22 8/8/18 24.18 24.42 24.44 25.86 2.60 1.90 7.00 7.06 26.6 1.5 7.78 9.69 6.89 2.23 7/11/18 21.79 21.75 25.47 25.51 4.46 4.18 7.14 7.15 24.7 1.25 25.18 25.2 4.38 10.62 6/27/18 20.72 20.69 24.68 24.78 6.51 5.47 7.37 7.31 23.8 1.756ottom 6.45 6.14 1.38 1.83 5/23/18 15.30 15.06 24.02 24.37 5.51 5.16 7.46 7.51 18.9 0.5 3.61 24.1 0.34 5.39 Green lines indicate replicate surveys. Image: surveys. <td col<="" td=""><td></td><td></td><td>11:2</td></td>	<td></td> <td></td> <td>11:2</td>			11:2	
8/23/18 23.65 23.77 24.52 24.79 5.38 3.69 7.34 7.26 22.3 1 15.17 16.4 6.54 12.22 8/8/18 24.18 24.42 24.44 25.86 2.60 1.90 7.00 7.06 26.6 1.5 7.78 9.69 6.89 2.23 7/11/18 21.79 21.75 25.47 25.51 4.46 4.18 7.14 7.15 24.7 1.25 25.18 25.2 4.38 10.62 6/27/18 20.72 20.69 24.68 24.78 6.51 5.47 7.37 7.31 23.8 1.75Bottom 6.45 6.14 1.38 1.83 5/23/18 15.00 15.06 24.02 24.37 5.51 5.16 7.46 7.51 18.9 0.5 3.61 24.1 0.34 5.39 Green lines indicate replicate surveys. Image: surveys. Image: surveys. Red numbers indicate that the readings were unusually low or high but reflect station conditions. Image: survey. Image: survey.		8	8:00		
8/8/18 24.18 24.42 24.44 25.86 2.60 1.90 7.00 7.06 26.6 1.5 7.78 9.69 6.89 2.23 7/11/18 21.79 21.75 25.47 25.51 4.46 4.18 7.14 7.15 24.7 1.25 25.18 25.2 4.38 10.62 6/27/18 20.72 20.69 24.68 24.78 6.51 5.47 7.37 7.31 23.8 1.75Bottom 6.45 6.14 1.38 1.83 5/23/18 15.30 15.06 24.02 24.37 5.51 5.16 7.46 7.51 18.9 0.5 3.61 24.1 0.34 5.39 Green lines indicate replicate surveys. Image: surveys. Red numbers indicate that the readings were unusually low or high but reflect station conditions. Image: surveys.	1.64		11:3		
7/11/18 21.79 21.75 25.47 25.51 4.46 4.18 7.14 7.15 24.7 1.25 25.18 25.2 4.38 10.62 6/27/18 20.72 20.69 24.68 24.78 6.51 5.47 7.37 7.31 23.8 1.75Bottom 6.45 6.14 1.38 1.83 5/23/18 15.30 15.06 24.02 24.37 5.51 5.16 7.46 7.51 18.9 0.5 3.61 24.1 0.34 5.39 Green lines indicate replicate surveys. Red numbers indicate that the readings were unusually low or high but reflect station conditions.			8:35		
6/27/18 20.72 20.69 24.68 24.78 6.51 5.47 7.37 7.31 23.8 1.75Bottom 6.45 6.14 1.38 1.83 5/23/18 15.30 15.06 24.02 24.37 5.51 5.16 7.46 7.51 18.9 0.5 3.61 24.1 0.34 5.39 Green lines indicate replicate surveys. Red numbers indicate that the readings were unusually low or high but reflect station conditions.			8:35 9:20		
5/23/18 15.30 15.06 24.02 24.37 5.51 5.16 7.46 7.51 18.9 0.5 3.61 24.1 0.34 5.39 Green lines indicate replicate surveys. Red numbers indicate that the readings were unusually low or high but reflect station conditions.			9.20 11:3		
Green lines indicate replicate surveys. Image: Constraint of the survey of the surve			8:35		
Red numbers indicate that the readings were unusually low or high but reflect station conditions.					
		$-\top$			
		-+			
*Sonde surface levels are taken at a half meter below the surface.		-+			

2018 PRECIPITATION DATA

CSHH 2018	(JANUARY	-DECEMBER) P	RECIPITATION	DATA FOR	SEA CLIFF			
MO/DAY	AMT(MM)	AMT(IN)	MO/DAY	AMT(MM)	AMT(IN)	MO/DAY	AMT(MM)	AMT(IN)
JAN			MARCH			MAY		
4**blizzard	28.19	1.11	1	6.35	0.25	3	1.52	0.06
8*	2.54	0.10	2+*	63.75	2.51	10	4.32	0.17
12	27.18	1.07	7*	28.70	1.13	12	6.35	0.25
13	4.57	0.18	, 9Т	0.00	0.00	13	3.56	0.14
17*	5.59	0.22	13**	6.35	0.25	14T	0.00	0.00
22	1.27	0.05	14T**	0.00	0.00	15	9.40	0.37
23	11.18	0.44	15*	2.54	0.10	16	16.51	0.65
28	6.86	0.44	16T**	0.00	0.00	17	4.32	0.03
20 29.T	0.00	0.27	21*	35.56	1.40	19	19.81	0.78
<u>29.1</u> 30*	12.70	0.50	22*	25.40	1.00	22	6.35	0.25
30	12.70	0.50	22 25T	0.00	0.00	22	2.54	0.25
			29		0.00	25	10.67	0.10
				0.51				
			30	3.56	0.14	27†	14.99	0.59
						31	2.29	0.09
TOTAL	100.08	3.94	TOTAL	172.7	6.80	TOTAL	102.62	4.04
MO/DAY	AMT(MM)	AMT(IN)	MO/DAY	AMT(MM)	AMT(IN)	MO/DAY	AMT(MM)	AMT(IN)
FEB			APRIL			JUNE		
2	6.35	0.25	1T	0.00	0.00	1	4.57	0.18
4	29.21	1.15	2*	38.10	1.50	3	0.76	0.03
5	1.27	0.05	3	8.38	0.33	4	13.46	0.53
7	23.88	0.94	4	3.30	0.13	5	0.51	0.02
7 9T**	0.00	0.00	6	2.03	0.08	10	0.51	0.02
10	8.89	0.35	10	1.27	0.05	13	1.52	0.02
10	33.02	1.30	15	2.29	0.09	18	2.29	0.08
12	0.25	0.01	16	61.72	2.43	19	1.27	0.05
12	0.25	0.03	10 17T	0.00	0.00	21	22.86	0.05
15 16	5.84	0.23	19 25	5.59	0.22	22T 23	0.00	0.00
-	4.57	0.18	-	9.40	0.37	-	0.76	0.03
17*	25.40	1.00	26	1.27	0.05	24	0.76	0.03
19	1.27	0.05	27	2.03	0.08	28A	26.67	1.05
21	2.29	0.09	28T	0.00	0.00			
22	3.81	0.15	29	3.30	0.13			
23	3.30	0.13	30	0.51	0.02			
24	3.30	0.13						
25	22.35	0.88						
TOTAL	175.77	6.92	TOTAL	139.19	5.48	TOTAL	75.95	2.99
Note: Precip	itation recor	ded from midnial	nt to midniaht: s	now recorde	d in inches, conv	erted to approx	kimate liquid (equivalent (see
					ght and 8 AM; "B'			
					evening, by midni			
T=trace amo					<u> </u>			,
	osure for rai	n dates ():						
			approximate lig	uid equivaler	nt in mm (5 in of v	vet snow appro	x, equal to 1	in liquid precip
*Sleet/rain n								cip)
*Sleet/rain n					(10 in of snow eq			cip.).

2018 PRECIPITATION DATA

			MO/DAY			MO/DAY		
MO/DAY JULY	AMT(MM)	AMT(IN)	SEPT	AMT(MM)	AMT(IN)	NOV	AMT(MM)	AMT(IN)
	1.02	0.04	6	7.87	0.31	2	2.54	0.10
3 4	0.51	0.04	8	1.27	0.05	3	8.64	0.34
4 6	3.30	0.02	9	8.89	0.05	5	18.80	0.74
0 15A	13.46	0.13	10	28.70	1.13	6	17.02	0.74
17C	26.92	1.06	11	9.40	0.37	9	21.34	0.84
21	20.92	0.10	12	13.97	0.55	13	31.50	1.24
21 22A	24.13	0.10	13	1.52	0.06	15*	55.37	2.18
23	1.27	0.95	17T	0.00	0.00	19T	0.00	0.00
25C	25.65	1.01	18	28.45	1.12	21T	0.00	0.00
27	5.08	0.20	25	18.03	0.71	24	25.40	1.00
	5.00	0.20	26	3.05	0.12	25	18.54	0.73
			20	13.21	0.12	25	27.69	1.09
			28	24.38	0.96	20 28Tsnow	0.00	0.00
			20	24.30	0.90	281 show 30	1.78	0.00
						50	1.70	0.07
TOTAL	103.89	4.09	TOTAL	158.75	6.25	TOTAL	228.60	9.00
MO/DAY	AMT(MM)	AMT(IN)	MO/DAY	AMT(MM)	AMT(IN)	MO/DAY	AMT(MM)	AMT(IN)
AUGUST						DEC		
	3.05	0.12		11.94	0.47		3.81	0.15
1 2T	0.00	0.12	2 4	1.52	0.47	2	19.05	0.15
21 3T	0.00	0.00	8	0.25	0.00	2 8Tsnow	0.00	0.75
4B	17.02	0.00	9	0.25	0.01	13*	0.00	0.00
4D 7	9.14	0.36	11	30.23	1.19	13	5.08	0.03
7 8A	10.41	0.30	12	20.57	0.81	14	5.08	0.20
11B	65.53	2.58	13	3.56	0.01	16	34.29	1.35
13C	11.43	0.45	15	2.79	0.14	20	4.83	0.19
13C 14C	3.30	0.13	20	2.79	0.11	20	53.85	2.12
14C 17C	3.81	0.15	20	0.51	0.02	22T	0.00	0.00
18A	16.26	0.64	23T	0.00	0.02	24	2.79	0.11
19T	0.00	0.00	27	34.29	1.35	28	24.38	0.96
20	0.25	0.01	29	3.56	0.14	30**	0.76	0.03
22A	7.11	0.28	23	0.00	0.14	31	33.02	1.30
31T	0.00	0.00					00.02	1.00
								7.3
TOTAL	147.32	5.8	TOTAL	112.27	4.42	TOTAL	187.71	14.78